Pruning Pretrained Encoders with a Multitask Objective
- URL: http://arxiv.org/abs/2112.05705v1
- Date: Fri, 10 Dec 2021 17:57:33 GMT
- Title: Pruning Pretrained Encoders with a Multitask Objective
- Authors: Patrick Xia, Richard Shin
- Abstract summary: We compare pruning a single model with a multitask objective against the best ensemble of single-task models.
Additional analysis finds that using a multitask objective during pruning can also be an effective method for reducing model sizes for low-resource tasks.
- Score: 12.062758391661847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sizes of pretrained language models make them challenging and expensive
to use when there are multiple desired downstream tasks. In this work, we adopt
recent strategies for model pruning during finetuning to explore the question
of whether it is possible to prune a single encoder so that it can be used for
multiple tasks. We allocate a fixed parameter budget and compare pruning a
single model with a multitask objective against the best ensemble of
single-task models. We find that under two pruning strategies (element-wise and
rank pruning), the approach with the multitask objective outperforms training
models separately when averaged across all tasks, and it is competitive on each
individual one. Additional analysis finds that using a multitask objective
during pruning can also be an effective method for reducing model sizes for
low-resource tasks.
Related papers
- One-Shot Pruning for Fast-adapting Pre-trained Models on Devices [28.696989086706186]
Large-scale pre-trained models have been remarkably successful in resolving downstream tasks.
deploying these models on low-capability devices still requires an effective approach, such as model pruning.
We present a scalable one-shot pruning method that leverages pruned knowledge of similar tasks to extract a sub-network from the pre-trained model for a new task.
arXiv Detail & Related papers (2023-07-10T06:44:47Z) - Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for
Downstream Tasks [55.431048995662714]
We create a small model for a new task from the pruned models of similar tasks.
We show that a few fine-tuning steps on this model suffice to produce a promising pruned-model for the new task.
We develop a simple but effective ''Meta-Vote Pruning (MVP)'' method that significantly reduces the pruning iterations for a new task.
arXiv Detail & Related papers (2023-01-27T06:49:47Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
Generalist models are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model.
We release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction.
arXiv Detail & Related papers (2022-12-08T17:07:09Z) - DiSparse: Disentangled Sparsification for Multitask Model Compression [92.84435347164435]
DiSparse is a simple, effective, and first-of-its-kind multitask pruning and sparse training scheme.
Our experimental results demonstrate superior performance on various configurations and settings.
arXiv Detail & Related papers (2022-06-09T17:57:46Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy.
The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task.
Using separate bottom-layer parameters could achieve significantly better performance than the common practice.
arXiv Detail & Related papers (2021-07-23T17:26:40Z) - Small Towers Make Big Differences [59.243296878666285]
Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
arXiv Detail & Related papers (2020-08-13T10:45:31Z) - Low Resource Multi-Task Sequence Tagging -- Revisiting Dynamic
Conditional Random Fields [67.51177964010967]
We compare different models for low resource multi-task sequence tagging that leverage dependencies between label sequences for different tasks.
We find that explicit modeling of inter-dependencies between task predictions outperforms single-task as well as standard multi-task models.
arXiv Detail & Related papers (2020-05-01T07:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.