Learning distributed channel access policies for networked estimation:
data-driven optimization in the mean-field regime
- URL: http://arxiv.org/abs/2112.05837v1
- Date: Fri, 10 Dec 2021 21:27:45 GMT
- Title: Learning distributed channel access policies for networked estimation:
data-driven optimization in the mean-field regime
- Authors: Marcos M. Vasconcelos
- Abstract summary: The problem of communicating sensor measurements over shared networks is prevalent in many modern large-scale distributed systems.
We show that in the mean-field regime, this problem exhibits a structure that enables tractable optimization algorithms.
We obtain a data-driven learning scheme that admits a finite sample-complexity guarantee on the performance of the resulting estimation system.
- Score: 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of communicating sensor measurements over shared networks is
prevalent in many modern large-scale distributed systems such as cyber-physical
systems, wireless sensor networks, and the internet of things. Due to bandwidth
constraints, the system designer must jointly design decentralized medium
access transmission and estimation policies that accommodate a very large
number of devices in extremely contested environments such that the collection
of all observations is reproduced at the destination with the best possible
fidelity. We formulate a remote estimation problem in the mean-field regime
where a very large number of sensors communicate their observations to an
access point, or base station, under a strict constraint on the maximum
fraction of transmitting devices. We show that in the mean-field regime, this
problem exhibits a structure that enables tractable optimization algorithms.
More importantly, we obtain a data-driven learning scheme that admits a finite
sample-complexity guarantee on the performance of the resulting estimation
system under minimal assumptions on the data's probability density function.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Edge-device Collaborative Computing for Multi-view Classification [9.047284788663776]
We explore collaborative inference at the edge, in which edge nodes and end devices share correlated data and the inference computational burden.
We introduce selective schemes that decrease bandwidth resource consumption by effectively reducing data redundancy.
Experimental results highlight that selective collaborative schemes can achieve different trade-offs between the above performance metrics.
arXiv Detail & Related papers (2024-09-24T11:07:33Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
This paper investigates the sensor placement problem for networks.
We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally.
Next, we propose an efficient and adaptive greedy for sensor placement that scales to large networks.
arXiv Detail & Related papers (2023-12-12T01:08:08Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Federated Learning for Intrusion Detection System: Concepts, Challenges
and Future Directions [0.20236506875465865]
Intrusion detection systems play a significant role in ensuring security and privacy of smart devices.
The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system.
arXiv Detail & Related papers (2021-06-16T13:13:04Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
We present a weapon detection system based on an ensemble of semantic Convolutional Neural Networks.
A set of simpler neural networks dedicated to specific tasks requires less computational resources and can be trained in parallel.
The overall output of the system given by the aggregation of the outputs of individual networks can be tuned by a user to trade-off false positives and false negatives.
arXiv Detail & Related papers (2020-02-11T13:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.