Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis
- URL: http://arxiv.org/abs/2411.03996v1
- Date: Wed, 06 Nov 2024 15:38:31 GMT
- Title: Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis
- Authors: Alexandros Gkillas, Aris Lalos,
- Abstract summary: Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
- Score: 50.18156030818883
- License:
- Abstract: Anomaly and missing data constitute a thorny problem in industrial applications. In recent years, deep learning enabled anomaly detection has emerged as a critical direction, however the improved detection accuracy is achieved with the utilization of large neural networks, increasing their storage and computational cost. Moreover, the data collected in edge devices contain user privacy, introducing challenges that can be successfully addressed by the privacy-preserving distributed paradigm, known as federated learning (FL). This framework allows edge devices to train and exchange models increasing also the communication cost. Thus, to deal with the increased communication, processing and storage challenges of the FL based deep anomaly detection NN pruning is expected to have significant benefits towards reducing the processing, storage and communication complexity. With this focus, a novel compression-based optimization problem is proposed at the server-side of a FL paradigm that fusses the received local models broadcast and performs pruning generating a more compressed model. Experiments in the context of anomaly detection and missing value imputation demonstrate that the proposed FL scenario along with the proposed compressed-based method are able to achieve high compression rates (more than $99.7\%$) with negligible performance losses (less than $1.18\%$ ) as compared to the centralized solutions.
Related papers
- FedMSE: Federated learning for IoT network intrusion detection [0.0]
The rise of IoT has expanded the cyber attack surface, making traditional centralized machine learning methods insufficient due to concerns about data availability, computational resources, transfer costs, and especially privacy preservation.
A semi-supervised federated learning model was developed to overcome these issues, combining the Shrink Autoencoder and Centroid one-class classifier (SAE-CEN)
This approach enhances the performance of intrusion detection by effectively representing normal network data and accurately identifying anomalies in the decentralized strategy.
arXiv Detail & Related papers (2024-10-18T02:23:57Z) - Sparse Training for Federated Learning with Regularized Error Correction [9.852567834643292]
Federated Learning (FL) has attracted much interest due to the significant advantages it brings to training deep neural network (DNN) models.
FLARE presents a novel sparse training approach via accumulated pulling of the updated models with regularization on the embeddings in the FL process.
The performance of FLARE is validated through extensive experiments on diverse and complex models, achieving a remarkable sparsity level (10 times and more beyond the current state-of-the-art) along with significantly improved accuracy.
arXiv Detail & Related papers (2023-12-21T12:36:53Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - FLARE: Detection and Mitigation of Concept Drift for Federated Learning
based IoT Deployments [2.7776688429637466]
FLARE is a lightweight dual-scheduler FL framework that conditionally transfers training data and deploys models between edge and sensor endpoints.
We show that FLARE can significantly reduce the amount of data exchanged between edge and sensor nodes compared to fixed-interval scheduling methods.
It can successfully detect concept drift reactively with at least a 16x reduction in latency.
arXiv Detail & Related papers (2023-05-15T10:09:07Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach [40.992167455141946]
This paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT.
We first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability.
Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies.
Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textitk selection to
arXiv Detail & Related papers (2020-07-19T16:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.