An Empirical Study on Relation Extraction in the Biomedical Domain
- URL: http://arxiv.org/abs/2112.05910v1
- Date: Sat, 11 Dec 2021 03:36:38 GMT
- Title: An Empirical Study on Relation Extraction in the Biomedical Domain
- Authors: Yongkang Li
- Abstract summary: We consider both sentence-level and document-level relation extraction, and run a few state-of-the-art methods on several benchmark datasets.
Our results show that (1) current document-level relation extraction methods have strong generalization ability; (2) existing methods require a large amount of labeled data for model fine-tuning in biomedicine.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation extraction is a fundamental problem in natural language processing.
Most existing models are defined for relation extraction in the general domain.
However, their performance on specific domains (e.g., biomedicine) is yet
unclear. To fill this gap, this paper carries out an empirical study on
relation extraction in biomedical research articles. Specifically, we consider
both sentence-level and document-level relation extraction, and run a few
state-of-the-art methods on several benchmark datasets. Our results show that
(1) current document-level relation extraction methods have strong
generalization ability; (2) existing methods require a large amount of labeled
data for model fine-tuning in biomedicine. Our observations may inspire people
in this field to develop more effective models for biomedical relation
extraction.
Related papers
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
We aim to develop flexible identification conditions for multimodal data.
We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work.
Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology.
We provide an analysis of recent advancements achieved through cross modeling of biomolecules and natural language.
arXiv Detail & Related papers (2024-03-03T14:59:47Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - High-throughput Biomedical Relation Extraction for Semi-Structured Web Articles Empowered by Large Language Models [1.9665865095034865]
We formulate the relation extraction task as binary classifications for large language models.
We designate the main title as the tail entity and explicitly incorporate it into the context.
Longer contents are sliced into text chunks, embedded, and retrieved with additional embedding models.
arXiv Detail & Related papers (2023-12-13T16:43:41Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - Modular Self-Supervision for Document-Level Relation Extraction [17.039775384229355]
We propose decomposing document-level relation extraction into relation detection and argument resolution.
We conduct a thorough evaluation in biomedical machine reading for precision oncology, where cross-paragraph relation mentions are prevalent.
Our method outperforms prior state of the art, such as multi-scale learning and graph neural networks, by over 20 absolute F1 points.
arXiv Detail & Related papers (2021-09-11T20:09:18Z) - Learning Informative Representations of Biomedical Relations with Latent
Variable Models [2.4366811507669115]
We propose a latent variable model with an arbitrarily flexible distribution to represent the relation between an entity pair.
We demonstrate that our model achieves results competitive with strong baselines for both tasks while having fewer parameters and being significantly faster to train.
arXiv Detail & Related papers (2020-11-20T08:56:31Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - A logic-based relational learning approach to relation extraction: The
OntoILPER system [0.9176056742068812]
We present OntoILPER, a logic-based relational learning approach to Relation Extraction.
OntoILPER takes profit of a rich relational representation of examples, which can alleviate the drawbacks.
The proposed relational approach seems to be more suitable for Relation Extraction than statistical ones.
arXiv Detail & Related papers (2020-01-13T12:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.