論文の概要: Predicting Above-Sentence Discourse Structure using Distant Supervision
from Topic Segmentation
- arxiv url: http://arxiv.org/abs/2112.06196v1
- Date: Sun, 12 Dec 2021 10:16:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-15 11:17:20.868034
- Title: Predicting Above-Sentence Discourse Structure using Distant Supervision
from Topic Segmentation
- Title(参考訳): トピックセグメンテーションからの遠隔監視による上述の談話構造予測
- Authors: Patrick Huber, Linzi Xing and Giuseppe Carenini
- Abstract要約: RSTスタイルの談話解析は多くのNLPタスクにおいて重要な役割を担っている。
その重要性にもかかわらず、現代の談話解析における最も一般的な制限の1つは、大規模なデータセットの欠如である。
- 参考スコア(独自算出の注目度): 8.688675709130289
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: RST-style discourse parsing plays a vital role in many NLP tasks, revealing
the underlying semantic/pragmatic structure of potentially complex and diverse
documents. Despite its importance, one of the most prevailing limitations in
modern day discourse parsing is the lack of large-scale datasets. To overcome
the data sparsity issue, distantly supervised approaches from tasks like
sentiment analysis and summarization have been recently proposed. Here, we
extend this line of research by exploiting distant supervision from topic
segmentation, which can arguably provide a strong and oftentimes complementary
signal for high-level discourse structures. Experiments on two human-annotated
discourse treebanks confirm that our proposal generates accurate tree
structures on sentence and paragraph level, consistently outperforming previous
distantly supervised models on the sentence-to-document task and occasionally
reaching even higher scores on the sentence-to-paragraph level.
- Abstract(参考訳): RSTスタイルの談話解析は多くのNLPタスクにおいて重要な役割を担い、潜在的に複雑で多様な文書の基本的な意味的・実践的構造を明らかにする。
その重要性にもかかわらず、現代の談話パースにおける最も一般的な制限の1つは、大規模なデータセットの欠如である。
データ空間の問題に対処するため、感情分析や要約といったタスクから遠ざかるアプローチが近年提案されている。
ここでは,トピックセグメンテーションから遠ざかって,高レベルの談話構造に対して強固かつしばしば補完的な信号を提供することによって,この研究線を拡大する。
2つの人間の注釈付き談話木バンクを用いた実験により,提案手法が文と段落レベルで正確な木構造を生成できることが確認された。
関連論文リスト
- Topic-driven Distant Supervision Framework for Macro-level Discourse
Parsing [72.14449502499535]
テキストの内部修辞構造を解析する作業は、自然言語処理において難しい問題である。
近年のニューラルモデルの発展にもかかわらず、トレーニングのための大規模で高品質なコーパスの欠如は大きな障害となっている。
近年の研究では、遠方の監督を用いてこの制限を克服しようと試みている。
論文 参考訳(メタデータ) (2023-05-23T07:13:51Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
本稿では、トピックセグメンテーションと談話解析という2つの談話分析タスクにおけるChatGPTの性能を体系的に検証する。
ChatGPTは、一般的なドメイン間会話においてトピック構造を特定する能力を示すが、特定のドメイン間会話ではかなり困難である。
我々のより深い調査は、ChatGPTは人間のアノテーションよりも合理的なトピック構造を提供するが、階層的なレトリック構造を線形に解析することしかできないことを示唆している。
論文 参考訳(メタデータ) (2023-05-15T07:14:41Z) - Large Discourse Treebanks from Scalable Distant Supervision [30.615883375573432]
本稿では,感情分析の補助的課題に対する遠隔監視から「銀標準」談話木を生成する枠組みを提案する。
銀標準」の談話木は、より大きく、より多様性があり、ドメインに依存しないデータセットで訓練されている。
論文 参考訳(メタデータ) (2022-10-18T03:33:43Z) - Learning to Selectively Learn for Weakly-supervised Paraphrase
Generation [81.65399115750054]
弱監督データを用いた高品質なパラフレーズを生成するための新しい手法を提案する。
具体的には、弱制御されたパラフレーズ生成問題に以下のように取り組む。
検索に基づく擬似パラフレーズ展開により、豊富なラベル付き並列文を得る。
提案手法は,既存の教師なしアプローチよりも大幅に改善され,教師付き最先端技術と同等の性能を示す。
論文 参考訳(メタデータ) (2021-09-25T23:31:13Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Long Text Generation by Modeling Sentence-Level and Discourse-Level
Coherence [59.51720326054546]
本稿では,デコード処理における文レベルと談話レベルにおけるプレフィックス文を表現可能な長文生成モデルを提案する。
我々のモデルは最先端のベースラインよりも一貫性のあるテキストを生成することができる。
論文 参考訳(メタデータ) (2021-05-19T07:29:08Z) - An End-to-End Document-Level Neural Discourse Parser Exploiting
Multi-Granularity Representations [24.986030179701405]
構文とセマンティクスにまたがる複数のレベルの粒度から派生した堅牢な表現を利用します。
このような表現をエンドツーエンドのエンコーダデコーダニューラルアーキテクチャに組み込んで、よりリソース豊富な対話処理を行います。
論文 参考訳(メタデータ) (2020-12-21T08:01:04Z) - Narrative Incoherence Detection [76.43894977558811]
本稿では,文間セマンティック理解のための新たなアリーナとして,物語不整合検出の課題を提案する。
複数文の物語を考えると、物語の流れに意味的な矛盾があるかどうかを決定します。
論文 参考訳(メタデータ) (2020-12-21T07:18:08Z) - Unleashing the Power of Neural Discourse Parsers -- A Context and
Structure Aware Approach Using Large Scale Pretraining [26.517219486173598]
RSTに基づく談話解析は、要約、機械翻訳、意見マイニングなど、多くの下流アプリケーションにおいて重要なNLPタスクである。
本稿では,近年の文脈言語モデルを取り入れた,シンプルかつ高精度な談話解析について述べる。
RST-DTとInstr-DTの2つの主要なRTTデータセットにおける構造と核性を予測するための新しい最先端(SOTA)性能を確立する。
論文 参考訳(メタデータ) (2020-11-06T06:11:26Z) - MEGA RST Discourse Treebanks with Structure and Nuclearity from Scalable
Distant Sentiment Supervision [30.615883375573432]
本稿では,感情アノテートされたデータセットから遠方からの監視を用いて,談話木バンクを自動的に生成する新しい手法を提案する。
提案手法は,効率的なビーム探索手法を用いて,任意の長さの文書に構造と核性を取り入れた木を生成する。
実験により、MEGA-DTツリーバンクでトレーニングされた談話が、ドメイン間パフォーマンスの有望な向上をもたらすことが示された。
論文 参考訳(メタデータ) (2020-11-05T18:22:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。