論文の概要: Ex-Model: Continual Learning from a Stream of Trained Models
- arxiv url: http://arxiv.org/abs/2112.06511v1
- Date: Mon, 13 Dec 2021 09:46:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-14 15:14:47.006891
- Title: Ex-Model: Continual Learning from a Stream of Trained Models
- Title(参考訳): 元モデル: トレーニングされたモデルのストリームから継続的な学習
- Authors: Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, Davide Bacciu
- Abstract要約: 連続的な学習システムは、訓練されたモデルの形式で圧縮された情報の可用性を活用するべきであると論じる。
エージェントが生データの代わりに以前に訓練されたモデルのシーケンスから学習する「Ex-Model Continual Learning」(Ex-Model Continual Learning)という新しいパラダイムを導入し、形式化する。
- 参考スコア(独自算出の注目度): 12.27992745065497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning continually from non-stationary data streams is a challenging
research topic of growing popularity in the last few years. Being able to
learn, adapt, and generalize continually in an efficient, effective, and
scalable way is fundamental for a sustainable development of Artificial
Intelligent systems. However, an agent-centric view of continual learning
requires learning directly from raw data, which limits the interaction between
independent agents, the efficiency, and the privacy of current approaches.
Instead, we argue that continual learning systems should exploit the
availability of compressed information in the form of trained models. In this
paper, we introduce and formalize a new paradigm named "Ex-Model Continual
Learning" (ExML), where an agent learns from a sequence of previously trained
models instead of raw data. We further contribute with three ex-model continual
learning algorithms and an empirical setting comprising three datasets (MNIST,
CIFAR-10 and CORe50), and eight scenarios, where the proposed algorithms are
extensively tested. Finally, we highlight the peculiarities of the ex-model
paradigm and we point out interesting future research directions.
- Abstract(参考訳): 非定常データストリームから継続的に学ぶことは、ここ数年で人気が高まっている難しい研究テーマである。
効率的で効果的でスケーラブルな方法で継続的に学習し、適応し、一般化できることは、人工知能システムの持続可能な開発に不可欠である。
しかし、エージェント中心の継続的学習は、独立したエージェント間の相互作用、効率性、現在のアプローチのプライバシーを制限する生データから直接学習する必要がある。
代わりに、継続学習システムは、訓練されたモデルの形式で圧縮された情報の可用性を活用するべきであると論じる。
本稿では,エージェントが生データではなく,事前にトレーニングされたモデルのシーケンスから学習する「ex-model continual learning(exml)」という新しいパラダイムを紹介し,形式化する。
さらに,3つのモデル連続学習アルゴリズムと,3つのデータセット(mnist,cifar-10,core50)と,提案アルゴリズムを広範囲にテストした8つのシナリオからなる経験的設定に寄与する。
最後に,前モデルパラダイムの特異性に注目し,今後の興味深い研究方向性を指摘する。
関連論文リスト
- Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP)は、大規模なデータセット上でオフラインでトレーニングすることで、さまざまな下流タスクに対して印象的な結果を示している。
VLCP(Vision-Language Continual Pretraining)の研究を支援するために,我々はまず,包括的で統一されたベンチマークデータセットP9Dをコントリビュートする。
独立したタスクとしての各業界からのデータは、継続的な学習をサポートし、Webデータの事前学習をシミュレートする現実世界のロングテールな性質に準拠している。
論文 参考訳(メタデータ) (2023-08-14T13:53:18Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
自己教師型学習の普及は、従来のモデルがトレーニングに大量の十分な注釈付きデータを必要とするという事実によって引き起こされる。
モデルの差別的事前学習を通じて、訓練データの効率を向上させるための自己指導手法が導入された。
我々は,時間的データに対するマルチモーダルな自己教師型学習手法の総合的なレビューを初めて提供することを目的とする。
論文 参考訳(メタデータ) (2022-06-06T04:59:44Z) - Assessing the Knowledge State of Online Students -- New Data, New
Approaches, Improved Accuracy [28.719009375724028]
適応型オンライン教育システムを構築する上で,学生パフォーマンス(SP)モデリングは重要なステップである。
この研究は、4つの異なる知的チューリングシステムから最近利用可能になった4つの非常に大きなデータセットを使った最初のものである。
論文 参考訳(メタデータ) (2021-09-04T00:08:59Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
移動学習のための自己教師付き事前学習は、ラベルのないデータを用いて最先端の結果を改善する技術として、ますます人気が高まっている。
本稿では,自己指導型学習と伝達学習の分類学の概要を述べるとともに,各領域にまたがる事前学習タスクを設計するためのいくつかの顕著な手法を強調した。
論文 参考訳(メタデータ) (2020-07-01T22:55:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。