論文の概要: On the Value of ML Models
- arxiv url: http://arxiv.org/abs/2112.06775v1
- Date: Mon, 13 Dec 2021 16:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-14 18:52:47.178833
- Title: On the Value of ML Models
- Title(参考訳): MLモデルの価値について
- Authors: Fabio Casati, Pierre-Andr\'e No\"el and Jie Yang
- Abstract要約: 機械学習(ML)モデルの確立とベンチマークを行う場合、研究コミュニティは、実践的なアプリケーションでモデルがもたらす価値をよりよく把握する評価指標を優先すべきである、と私たちは主張する。
特定のユースケースのクラス -- 選択的な分類 -- に対して、我々はそれができるほどシンプルであるだけでなく、結果がインポートできることを示し、良い'MLモデルで何を探すべきかを洞察する。
- 参考スコア(独自算出の注目度): 7.301530330533432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue that, when establishing and benchmarking Machine Learning (ML)
models, the research community should favour evaluation metrics that better
capture the value delivered by their model in practical applications. For a
specific class of use cases -- selective classification -- we show that not
only can it be simple enough to do, but that it has import consequences and
provides insights what to look for in a ``good'' ML model.
- Abstract(参考訳): 機械学習(ML)モデルの確立とベンチマークを行う場合、研究コミュニティは、実践的なアプリケーションでモデルがもたらす価値をよりよく把握する評価指標を優先すべきである、と私たちは主張する。
特定のユースケースのクラス -- 選択的な分類 -- に対して、我々はそれができるほどシンプルであるだけでなく、結果がインポートできることを示し、‘よい’MLモデルで何を探すべきかの洞察を提供する。
関連論文リスト
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - A General Framework for Data-Use Auditing of ML Models [47.369572284751285]
本稿では,データ所有者のデータを用いた学習におけるMLモデルの評価方法を提案する。
本稿では,2種類のMLモデルにおけるデータ利用を監査するために,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2024-07-21T09:32:34Z) - OLMES: A Standard for Language Model Evaluations [64.85905119836818]
再現可能な言語モデル評価のための実用的でオープンな標準であるOLMESを提案する。
我々は,コミュニティが採用する評価実践において,様々な要因を特定し,検討する。
OLMESは、複数の質問の非自然な「閉じた」定式化を必要とする小さなベースモデル間の有意義な比較をサポートする。
論文 参考訳(メタデータ) (2024-06-12T17:37:09Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
正解と誤解の小さなデータセットを微調整すると、高い一般化と計算オーバーヘッドの少ない不確実性推定が得られることを示す。
また,確実な不確実性推定を可能にする機構についても検討し,多くのモデルを汎用的不確実性推定器として利用することができることを示した。
論文 参考訳(メタデータ) (2024-06-12T16:41:31Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Rethinking and Recomputing the Value of ML Models [28.80821411530123]
私たちがMLモデルをトレーニングし評価してきた方法は、それらが組織や社会的文脈に適用されているという事実をほとんど忘れている、と私たちは主張する。
この観点から、私たちはMLモデルの評価、選択、デプロイの方法を根本的に変えています。
論文 参考訳(メタデータ) (2022-09-30T01:02:31Z) - Evaluation of HTR models without Ground Truth Material [2.4792948967354236]
手書き文字認識モデルの開発における評価は容易である。
しかし、開発からアプリケーションに切り替えると、評価プロセスはトリッキーになります。
我々は,レキシコンに基づく評価が,レキシコンに基づく手法と競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T01:26:09Z) - Insights into Performance Fitness and Error Metrics for Machine Learning [1.827510863075184]
機械学習(ML)は、高いレベルの認知を達成し、人間のような分析を行うための訓練機械の分野である。
本稿では、回帰アルゴリズムや分類アルゴリズムにおいて、最もよく使われている性能適合度と誤差の測定値について検討する。
論文 参考訳(メタデータ) (2020-05-17T22:59:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。