論文の概要: Efficient Differentially Private Secure Aggregation for Federated
Learning via Hardness of Learning with Errors
- arxiv url: http://arxiv.org/abs/2112.06872v1
- Date: Mon, 13 Dec 2021 18:31:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-14 19:19:10.649772
- Title: Efficient Differentially Private Secure Aggregation for Federated
Learning via Hardness of Learning with Errors
- Title(参考訳): 誤りを伴う学習のハードネスを利用した連帯学習のための効率的な微分プライベートセキュアアグリゲーション
- Authors: Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring,
Samuel Clark, Joseph Near
- Abstract要約: フェデレーション機械学習はエッジコンピューティングを活用して、ネットワークユーザデータからモデルを開発する。
連邦学習におけるプライバシーは依然として大きな課題である。
マルチパーティ計算を用いた環境アグリゲーションの最近の進歩は、サードパーティの必要性を排除している。
そこで本研究では,新たな個人的かつ悪意のあるセキュアなアグリゲーションプロトコルを活用した,新たなフェデレーション学習プロトコルを提案する。
- 参考スコア(独自算出の注目度): 1.4680035572775534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated machine learning leverages edge computing to develop models from
network user data, but privacy in federated learning remains a major challenge.
Techniques using differential privacy have been proposed to address this, but
bring their own challenges -- many require a trusted third party or else add
too much noise to produce useful models. Recent advances in \emph{secure
aggregation} using multiparty computation eliminate the need for a third party,
but are computationally expensive especially at scale. We present a new
federated learning protocol that leverages a novel differentially private,
malicious secure aggregation protocol based on techniques from Learning With
Errors. Our protocol outperforms current state-of-the art techniques, and
empirical results show that it scales to a large number of parties, with
optimal accuracy for any differentially private federated learning scheme.
- Abstract(参考訳): フェデレーション機械学習はエッジコンピューティングを活用してネットワークユーザデータからモデルを開発するが、フェデレーション学習におけるプライバシは依然として大きな課題である。
ディファレンシャルプライバシを使用する技術はこの問題に対処するために提案されているが、独自の課題をもたらしている。
マルチパーティ計算による \emph{secure aggregation} の最近の進歩は、サードパーティの必要性をなくしているが、特に大規模では計算コストが高い。
本稿では,Learning With Errorsのテクニックに基づく,新たな個人的かつ悪意のあるセキュアアグリゲーションプロトコルを利用する,新たなフェデレーション学習プロトコルを提案する。
本プロトコルは,現在の最先端技術よりも優れており,実験結果から,任意の個人共用学習方式に対して最適な精度で,多数のパーティにスケールできることがわかった。
関連論文リスト
- On Joint Noise Scaling in Differentially Private Federated Learning with Multiple Local Steps [0.5439020425818999]
フェデレーション学習(Federated Learning)とは、生データを共有せずに機械学習モデルをトレーニングする分散学習環境である。
簡単な新しい分析によって、セキュアなアグリゲーションの恩恵を受けながら、パーティが複数のローカルな最適化ステップを実行できることを示します。
論文 参考訳(メタデータ) (2024-07-27T15:54:58Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
フェデレーション・インストラクション・チューニング(FedIT)は、複数のデータ所有者間で協調的なトレーニングを統合することで、有望なソリューションである。
FedITは、インストラクショナルデータの不足や、トレーニングデータ抽出攻撃への露出リスクなどの制限に直面している。
本稿では,FewFedPITを提案する。このFewFedPITは,フェデレートされた数ショット学習のプライバシー保護とモデル性能を同時に向上する。
論文 参考訳(メタデータ) (2024-03-10T08:41:22Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMixは、プライベートとパブリックの両方の画像データを使用して、ディープニューラルネットワーク分類器をトレーニングするための適応型微分プライベートアルゴリズムである。
プライベートデータを無視する数ショットあるいはゼロショットの学習ベースラインは、大規模なプライベートデータセットの微調整よりも優れています。
論文 参考訳(メタデータ) (2022-03-22T06:15:43Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
フェデレートラーニング(Federated Learning)は、複数のデバイスや機関が、データをプライベートに保存しながら、機械学習モデルを協調的にトレーニングすることを可能にする、新しいフレームワークである。
本研究では,データの統計的不均一性を正式に分類し,それに直面することのできる最も顕著な学習戦略をレビューする。
同時に、継続学習のような他の機械学習フレームワークからのアプローチを導入し、データの不均一性にも対処し、フェデレートラーニング設定に容易に適応できるようにします。
論文 参考訳(メタデータ) (2021-11-26T09:57:11Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
そこで我々はDP-Sinkhornを提案する。DP-Sinkhornは個人データからデータ分布を差分プライバシで学習するための新しいトランスポートベース生成手法である。
差分的にプライベートな生成モデルを訓練するための既存のアプローチとは異なり、我々は敵の目的に頼らない。
論文 参考訳(メタデータ) (2021-11-01T18:10:21Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
フェデレーション学習は、複数のエージェントと連携してグローバルモデルを見つける中央プロセッサを含む。
複数のクライアントに接続されたサーバの現在のアーキテクチャは、サーバの通信障害や計算過負荷に非常に敏感です。
暗号と差分プライバシーの概念を使用して、グラフ構造に拡張するフェデレーション学習アルゴリズムを民営化します。
論文 参考訳(メタデータ) (2021-04-26T09:51:24Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - Differentially Private Secure Multi-Party Computation for Federated
Learning in Financial Applications [5.50791468454604]
フェデレートラーニングにより、信頼されたサーバで作業する多くのクライアントが、共有機械学習モデルを共同で学習することが可能になる。
これにより機密データを露出するリスクが軽減されるが、通信されたモデルパラメータからクライアントのプライベートデータセットに関する情報をリバースすることが可能になる。
筆者らは,非専門的な聴衆にプライバシ保存型フェデレーション学習プロトコルを提示し,実世界のクレジットカード詐欺データセットにロジスティック回帰を用いてそれを実証し,オープンソースシミュレーションプラットフォームを用いて評価する。
論文 参考訳(メタデータ) (2020-10-12T17:16:27Z) - Additively Homomorphical Encryption based Deep Neural Network for
Asymmetrically Collaborative Machine Learning [12.689643742151516]
機械学習の保存は、金融セクターにおけるさらなる適用を制限する制約を生み出す。
我々は、ある当事者がデータを所有するが、別の当事者がラベルのみを所有する新しい協調機械学習の実践的手法を提案する。
異なるデータセットに対する我々の実験は、精度のない安定したトレーニングだけでなく、100倍以上のスピードアップも示しています。
論文 参考訳(メタデータ) (2020-07-14T06:43:25Z) - Differentially private cross-silo federated learning [16.38610531397378]
厳密なプライバシは、分散機械学習において最重要事項である。
本稿では,いわゆるクロスサイロ・フェデレーション・ラーニング・セッティングにおいて,加算準同型セキュア和プロトコルと差分プライバシーを併用する。
提案手法により,非分散設定に匹敵する予測精度が得られることを示す。
論文 参考訳(メタデータ) (2020-07-10T18:15:10Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
フェデレーション・ラーニング(Federated Learning)とは、エッジデバイスのセットが、中央サーバのオーケストレーションの下でモデルを協調的にトレーニングする、機械学習環境である。
本稿では,モデルユーティリティの劣化を伴わずに,プライバシ問題に対処するフェデレーション学習手法を開発する。
このアプローチのエンドツーエンドのプライバシ保証を厳格に提供し、理論的収束率を分析します。
論文 参考訳(メタデータ) (2020-03-30T19:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。