Efficient Differentially Private Secure Aggregation for Federated
Learning via Hardness of Learning with Errors
- URL: http://arxiv.org/abs/2112.06872v1
- Date: Mon, 13 Dec 2021 18:31:08 GMT
- Title: Efficient Differentially Private Secure Aggregation for Federated
Learning via Hardness of Learning with Errors
- Authors: Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring,
Samuel Clark, Joseph Near
- Abstract summary: Federated machine learning leverages edge computing to develop models from network user data.
Privacy in federated learning remains a major challenge.
Recent advances in emphsecure aggregation using multiparty computation eliminate the need for a third party.
We present a new federated learning protocol that leverages a novel differentially private, malicious secure aggregation protocol.
- Score: 1.4680035572775534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated machine learning leverages edge computing to develop models from
network user data, but privacy in federated learning remains a major challenge.
Techniques using differential privacy have been proposed to address this, but
bring their own challenges -- many require a trusted third party or else add
too much noise to produce useful models. Recent advances in \emph{secure
aggregation} using multiparty computation eliminate the need for a third party,
but are computationally expensive especially at scale. We present a new
federated learning protocol that leverages a novel differentially private,
malicious secure aggregation protocol based on techniques from Learning With
Errors. Our protocol outperforms current state-of-the art techniques, and
empirical results show that it scales to a large number of parties, with
optimal accuracy for any differentially private federated learning scheme.
Related papers
- On Joint Noise Scaling in Differentially Private Federated Learning with Multiple Local Steps [0.5439020425818999]
Federated learning is a distributed learning setting where the main aim is to train machine learning models without having to share raw data.
We show how a simple new analysis allows the parties to perform multiple local optimisation steps while still benefiting from secure aggregation.
arXiv Detail & Related papers (2024-07-27T15:54:58Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMix is an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data.
A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset.
arXiv Detail & Related papers (2022-03-22T06:15:43Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private.
In this work, we formally classify data statistical heterogeneity and review the most remarkable learning strategies that are able to face it.
At the same time, we introduce approaches from other machine learning frameworks, such as Continual Learning, that also deal with data heterogeneity and could be easily adapted to the Federated Learning settings.
arXiv Detail & Related papers (2021-11-26T09:57:11Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
Federated learning involves a central processor that works with multiple agents to find a global model.
The current architecture of a server connected to multiple clients is highly sensitive to communication failures and computational overloads at the server.
We use cryptographic and differential privacy concepts to privatize the federated learning algorithm that we extend to the graph structure.
arXiv Detail & Related papers (2021-04-26T09:51:24Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
We study the multi-class classification setting where the labels are considered sensitive and ought to be protected.
We propose a new algorithm for training deep neural networks with label differential privacy, and run evaluations on several datasets.
arXiv Detail & Related papers (2021-02-11T15:09:06Z) - Differentially Private Secure Multi-Party Computation for Federated
Learning in Financial Applications [5.50791468454604]
Federated learning enables a population of clients, working with a trusted server, to collaboratively learn a shared machine learning model.
This reduces the risk of exposing sensitive data, but it is still possible to reverse engineer information about a client's private data set from communicated model parameters.
We present a privacy-preserving federated learning protocol to a non-specialist audience, demonstrate it using logistic regression on a real-world credit card fraud data set, and evaluate it using an open-source simulation platform.
arXiv Detail & Related papers (2020-10-12T17:16:27Z) - Additively Homomorphical Encryption based Deep Neural Network for
Asymmetrically Collaborative Machine Learning [12.689643742151516]
preserving machine learning creates a constraint which limits further applications in finance sectors.
We propose a new practical scheme of collaborative machine learning that one party owns data, but another party owns labels only.
Our experiments on different datasets demonstrate not only stable training without accuracy, but also more than 100 times speedup.
arXiv Detail & Related papers (2020-07-14T06:43:25Z) - Differentially private cross-silo federated learning [16.38610531397378]
Strict privacy is of paramount importance in distributed machine learning.
In this paper we combine additively homomorphic secure summation protocols with differential privacy in the so-called cross-silo federated learning setting.
We demonstrate that our proposed solutions give prediction accuracy that is comparable to the non-distributed setting.
arXiv Detail & Related papers (2020-07-10T18:15:10Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.