Differentially Private Secure Multi-Party Computation for Federated
Learning in Financial Applications
- URL: http://arxiv.org/abs/2010.05867v1
- Date: Mon, 12 Oct 2020 17:16:27 GMT
- Title: Differentially Private Secure Multi-Party Computation for Federated
Learning in Financial Applications
- Authors: David Byrd and Antigoni Polychroniadou
- Abstract summary: Federated learning enables a population of clients, working with a trusted server, to collaboratively learn a shared machine learning model.
This reduces the risk of exposing sensitive data, but it is still possible to reverse engineer information about a client's private data set from communicated model parameters.
We present a privacy-preserving federated learning protocol to a non-specialist audience, demonstrate it using logistic regression on a real-world credit card fraud data set, and evaluate it using an open-source simulation platform.
- Score: 5.50791468454604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning enables a population of clients, working with a trusted
server, to collaboratively learn a shared machine learning model while keeping
each client's data within its own local systems. This reduces the risk of
exposing sensitive data, but it is still possible to reverse engineer
information about a client's private data set from communicated model
parameters. Most federated learning systems therefore use differential privacy
to introduce noise to the parameters. This adds uncertainty to any attempt to
reveal private client data, but also reduces the accuracy of the shared model,
limiting the useful scale of privacy-preserving noise. A system can further
reduce the coordinating server's ability to recover private client information,
without additional accuracy loss, by also including secure multiparty
computation. An approach combining both techniques is especially relevant to
financial firms as it allows new possibilities for collaborative learning
without exposing sensitive client data. This could produce more accurate models
for important tasks like optimal trade execution, credit origination, or fraud
detection. The key contributions of this paper are: We present a
privacy-preserving federated learning protocol to a non-specialist audience,
demonstrate it using logistic regression on a real-world credit card fraud data
set, and evaluate it using an open-source simulation platform which we have
adapted for the development of federated learning systems.
Related papers
- Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - FedHP: Heterogeneous Federated Learning with Privacy-preserving [0.0]
Federated learning is a distributed machine learning environment, which ensures that clients complete collaborative training without sharing private data, only by exchanging parameters.
We propose a novel federated learning method, which consists of the pre-trained model as the backbone and fully connected layers as the head.
By sharing the embedding vector of classes, instead of parameters based on gradient space, clients can better adapt to private data, and it is more efficient in the communication between the server and clients.
arXiv Detail & Related papers (2023-01-27T13:32:17Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Efficient and Privacy Preserving Group Signature for Federated Learning [2.121963121603413]
Federated Learning (FL) is a Machine Learning (ML) technique that aims to reduce the threats to user data privacy.
This paper proposes an efficient and privacy-preserving protocol for FL based on group signature.
arXiv Detail & Related papers (2022-07-12T04:12:10Z) - Group privacy for personalized federated learning [4.30484058393522]
Federated learning is a type of collaborative machine learning, where participating clients process their data locally, sharing only updates to the collaborative model.
We propose a method to provide group privacy guarantees exploiting some key properties of $d$-privacy.
arXiv Detail & Related papers (2022-06-07T15:43:45Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
Federated learning involves a central processor that works with multiple agents to find a global model.
The current architecture of a server connected to multiple clients is highly sensitive to communication failures and computational overloads at the server.
We use cryptographic and differential privacy concepts to privatize the federated learning algorithm that we extend to the graph structure.
arXiv Detail & Related papers (2021-04-26T09:51:24Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z) - PrivacyFL: A simulator for privacy-preserving and secure federated
learning [2.578242050187029]
Federated learning is a technique that enables distributed clients to collaboratively learn a shared machine learning model.
PrivacyFL is a privacy-preserving and secure federated learning simulator.
arXiv Detail & Related papers (2020-02-19T20:16:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.