論文の概要: Exploring Latent Dimensions of Crowd-sourced Creativity
- arxiv url: http://arxiv.org/abs/2112.06978v1
- Date: Mon, 13 Dec 2021 19:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-15 15:25:25.384861
- Title: Exploring Latent Dimensions of Crowd-sourced Creativity
- Title(参考訳): クラウドソースクリエイティビティの潜在次元を探る
- Authors: Umut Kocasari, Alperen Bag, Efehan Atici and Pinar Yanardag
- Abstract要約: 私たちは、AIベースの最大のクリエイティビティプラットフォームであるArtbreederの開発を行っています。
このプラットフォーム上で生成された画像の潜在次元を探索し、画像を操作するための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.02294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the discovery of interpretable directions in the latent spaces of
pre-trained GANs has become a popular topic. While existing works mostly
consider directions for semantic image manipulations, we focus on an abstract
property: creativity. Can we manipulate an image to be more or less creative?
We build our work on the largest AI-based creativity platform, Artbreeder,
where users can generate images using pre-trained GAN models. We explore the
latent dimensions of images generated on this platform and present a novel
framework for manipulating images to make them more creative. Our code and
dataset are available at http://github.com/catlab-team/latentcreative.
- Abstract(参考訳): 近年,事前学習したGANの潜在空間における解釈可能な方向の発見が話題となっている。
既存の作品は、主にセマンティックな画像操作の方向を考慮しているが、私たちは抽象的な特性、すなわち創造性に焦点を当てている。
イメージを多かれ少なかれ創造的に操作できるだろうか?
私たちは、最大のaiベースのクリエイティビティプラットフォームであるartbreederで、トレーニング済みのganモデルを使って画像を生成することができます。
我々は,このプラットフォーム上で生成される画像の潜在次元を探索し,より創造的になるように画像を操作するための新しい枠組みを提案する。
私たちのコードとデータセットはhttp://github.com/catlab-team/latentcreativeで利用可能です。
関連論文リスト
- PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions [66.92809850624118]
PixWizardは、画像生成、操作、翻訳を自由言語命令に基づいて行うために設計されたイメージ・ツー・イメージのビジュアルアシスタントである。
我々は、様々な視覚タスクを統一された画像テキスト・画像生成フレームワークに取り組み、Omni Pixel-to-Pixel Instruction-Tuningデータセットをキュレートする。
我々の実験は、PixWizardが様々な解像度の画像に対して印象的な生成能力と理解能力を示すだけでなく、目に見えないタスクや人間の指示で有望な一般化能力を示すことを示した。
論文 参考訳(メタデータ) (2024-09-23T17:59:46Z) - Re-Thinking Inverse Graphics With Large Language Models [51.333105116400205]
逆グラフィックス -- イメージを物理変数に反転させ、レンダリングすると観察されたシーンの再現を可能にする -- は、コンピュータビジョンとグラフィックスにおいて根本的な課題である。
LLMを中心とした逆グラフフレームワークである逆グラフ大言語モデル(IG-LLM)を提案する。
我々は、凍結した事前学習されたビジュアルエンコーダと連続的な数値ヘッドを組み込んで、エンドツーエンドのトレーニングを可能にする。
論文 参考訳(メタデータ) (2024-04-23T16:59:02Z) - Creative Agents: Empowering Agents with Imagination for Creative Tasks [31.920963353890393]
本稿では,言語命令に基づくタスク結果の詳細な想像力を生成するイマジネータを用いて,制御器を拡張したクリエイティブエージェントのためのソリューションのクラスを提案する。
私たちは創造的なタスクを、オープンワールドの挑戦的なゲームMinecraftでベンチマークします。
我々は、創造的エージェントの詳細な実験分析を行い、創造的エージェントがMinecraftの生存モードにおける多様な建築創造を達成する最初のAIエージェントであることを示した。
論文 参考訳(メタデータ) (2023-12-05T06:00:52Z) - SketchDreamer: Interactive Text-Augmented Creative Sketch Ideation [111.2195741547517]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,制御されたスケッチを生成する手法を提案する。
我々の目標は、プロでないユーザにスケッチを作成させ、一連の最適化プロセスを通じて物語をストーリーボードに変換することです。
論文 参考訳(メタデータ) (2023-08-27T19:44:44Z) - CLIP-CLOP: CLIP-Guided Collage and Photomontage [16.460669517251084]
我々はコラージュを生成するために勾配に基づく発電機を設計する。
人間のアーティストはイメージパッチのライブラリをキュレートし、画像構成全体を(プロンプトで)記述する必要がある。
われわれは高解像度コラージュの美的可能性を探究し、オープンソースのGoogle Colabを芸術ツールとして提供する。
論文 参考訳(メタデータ) (2022-05-06T11:33:49Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGANはInvertible GANの略で、高品質な生成モデルの潜在空間に実際の画像を埋め込むことに成功した。
これにより、画像のインペイント、マージ、オンラインデータ拡張を実行できます。
論文 参考訳(メタデータ) (2021-12-08T21:39:00Z) - Telling Creative Stories Using Generative Visual Aids [52.623545341588304]
私たちはライターに、開始プロンプトからクリエイティブなストーリーを書くように頼み、同じプロンプトから生成するAIモデルによって生成されたビジュアルを提供した。
コントロールグループと比較すると、ビジュアルをストーリー・ライティング・アシストとして使用した作家は、より創造的で、オリジナルで、完全で、視覚的にできるストーリーを著した。
発見は、AIによる横断的なモダリティ入力は、人間とAIの共創において創造性の異なる側面に利益をもたらすが、収束する思考を妨げることを示している。
論文 参考訳(メタデータ) (2021-10-27T23:13:47Z) - The Intrinsic Dimension of Images and Its Impact on Learning [60.811039723427676]
自然画像データは従来の画素表現の高次元にもかかわらず低次元構造を示すと広く信じられている。
本研究では,一般的なデータセットに次元推定ツールを適用し,深層学習における低次元構造の役割を検討する。
論文 参考訳(メタデータ) (2021-04-18T16:29:23Z) - Creativity of Deep Learning: Conceptualization and Assessment [1.5738019181349994]
我々は,創造的領域における生成的深層学習の現在の応用を概念化し,評価するために,計算的創造性からの洞察を利用する。
私たちは、現在のシステムと、人間の創造性の異なるモデルと、その欠点の類似点を強調します。
論文 参考訳(メタデータ) (2020-12-03T21:44:07Z) - A Framework and Dataset for Abstract Art Generation via CalligraphyGAN [0.0]
本研究では,コンディショナル・ジェネレーティブ・アドバイザリ・ネットワークと文脈ニューラル言語モデルに基づく創造的枠組みを提示し,抽象アートワークを生成する。
私たちの作品は中国書道に触発され、字そのものが美的絵画である独特の視覚芸術形式である。
論文 参考訳(メタデータ) (2020-12-02T16:24:20Z) - Words as Art Materials: Generating Paintings with Sequential GANs [8.249180979158815]
大規模な分散データセット上での芸術画像の生成について検討する。
このデータセットには、形状、色、内容など、バリエーションのあるイメージが含まれている。
本稿では,逐次生成適応型ネットワークモデルを提案する。
論文 参考訳(メタデータ) (2020-07-08T19:17:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。