Acceleration techniques for optimization over trained neural network
ensembles
- URL: http://arxiv.org/abs/2112.07007v1
- Date: Mon, 13 Dec 2021 20:50:54 GMT
- Title: Acceleration techniques for optimization over trained neural network
ensembles
- Authors: Keliang Wang, Leonardo Lozano, Carlos Cardonha, David Bergman
- Abstract summary: We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit activation.
We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network.
- Score: 1.0323063834827415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study optimization problems where the objective function is modeled
through feedforward neural networks with rectified linear unit (ReLU)
activation. Recent literature has explored the use of a single neural network
to model either uncertain or complex elements within an objective function.
However, it is well known that ensembles of neural networks produce more stable
predictions and have better generalizability than models with single neural
networks, which suggests the application of ensembles of neural networks in a
decision-making pipeline. We study how to incorporate a neural network ensemble
as the objective function of an optimization model and explore computational
approaches for the ensuing problem. We present a mixed-integer linear program
based on existing popular big-$M$ formulations for optimizing over a single
neural network. We develop two acceleration techniques for our model, the first
one is a preprocessing procedure to tighten bounds for critical neurons in the
neural network while the second one is a set of valid inequalities based on
Benders decomposition. Experimental evaluations of our solution methods are
conducted on one global optimization problem and two real-world data sets; the
results suggest that our optimization algorithm outperforms the adaption of an
state-of-the-art approach in terms of computational time and optimality gaps.
Related papers
- Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks [2.0072624123275533]
The generalized Gauss-Newton (GGN) optimization method incorporates curvature estimates into its solution steps.
This work studies a GGN method for optimizing a two-layer neural network with explicit regularization.
arXiv Detail & Related papers (2024-04-23T10:02:22Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - The limitation of neural nets for approximation and optimization [0.0]
We are interested in assessing the use of neural networks as surrogate models to approximate and minimize objective functions in optimization problems.
Our study begins by determining the best activation function for approximating the objective functions of popular nonlinear optimization test problems.
arXiv Detail & Related papers (2023-11-21T00:21:15Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
It is proposed to upgrade piece-wise linear neural network models with physics informed knowledge for optimization problems with neural network models embedded.
For all cases, physics-informed trained neural network based optimal results are closer to global optimality.
arXiv Detail & Related papers (2023-02-02T10:14:54Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Efficient and Sparse Neural Networks by Pruning Weights in a
Multiobjective Learning Approach [0.0]
We propose a multiobjective perspective on the training of neural networks by treating its prediction accuracy and the network complexity as two individual objective functions.
Preliminary numerical results on exemplary convolutional neural networks confirm that large reductions in the complexity of neural networks with neglibile loss of accuracy are possible.
arXiv Detail & Related papers (2020-08-31T13:28:03Z) - Persistent Neurons [4.061135251278187]
We propose a trajectory-based strategy that optimize the learning task using information from previous solutions.
Persistent neurons can be regarded as a method with gradient informed bias where individual updates are corrupted by deterministic error terms.
We evaluate the full and partial persistent model and show it can be used to boost the performance on a range of NN structures.
arXiv Detail & Related papers (2020-07-02T22:36:49Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
We prove that finding all globally optimal two-layer ReLU neural networks can be performed by solving a convex optimization program with cone constraints.
Our analysis is novel, characterizes all optimal solutions, and does not leverage duality-based analysis which was recently used to lift neural network training into convex spaces.
arXiv Detail & Related papers (2020-06-10T15:38:30Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.