The limitation of neural nets for approximation and optimization
- URL: http://arxiv.org/abs/2311.12253v1
- Date: Tue, 21 Nov 2023 00:21:15 GMT
- Title: The limitation of neural nets for approximation and optimization
- Authors: Tommaso Giovannelli, Oumaima Sohab, Luis Nunes Vicente
- Abstract summary: We are interested in assessing the use of neural networks as surrogate models to approximate and minimize objective functions in optimization problems.
Our study begins by determining the best activation function for approximating the objective functions of popular nonlinear optimization test problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are interested in assessing the use of neural networks as surrogate models
to approximate and minimize objective functions in optimization problems. While
neural networks are widely used for machine learning tasks such as
classification and regression, their application in solving optimization
problems has been limited. Our study begins by determining the best activation
function for approximating the objective functions of popular nonlinear
optimization test problems, and the evidence provided shows that~SiLU has the
best performance. We then analyze the accuracy of function value, gradient, and
Hessian approximations for such objective functions obtained through
interpolation/regression models and neural networks. When compared to
interpolation/regression models, neural networks can deliver competitive zero-
and first-order approximations (at a high training cost) but underperform on
second-order approximation. However, it is shown that combining a neural net
activation function with the natural basis for quadratic
interpolation/regression can waive the necessity of including cross terms in
the natural basis, leading to models with fewer parameters to determine.
Lastly, we provide evidence that the performance of a state-of-the-art
derivative-free optimization algorithm can hardly be improved when the gradient
of an objective function is approximated using any of the surrogate models
considered, including neural networks.
Related papers
- Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks [2.0072624123275533]
The generalized Gauss-Newton (GGN) optimization method incorporates curvature estimates into its solution steps.
This work studies a GGN method for optimizing a two-layer neural network with explicit regularization.
arXiv Detail & Related papers (2024-04-23T10:02:22Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Neural Network-Based Score Estimation in Diffusion Models: Optimization
and Generalization [12.812942188697326]
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness.
A key component of these models is to learn the score function through score matching.
Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy.
arXiv Detail & Related papers (2024-01-28T08:13:56Z) - A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
We introduce a new approach to the estimation of the (generalisation) error and to convergence.
Our results include estimates of the error without any structural assumption on the neural networks.
arXiv Detail & Related papers (2023-06-23T20:57:31Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - A comparison of rational and neural network based approximations [0.0]
We compare the efficiency of function approximation using rational approximation, neural network and their combinations.
It was found that rational approximation is superior to neural network based approaches with the same number of decision variables.
arXiv Detail & Related papers (2023-03-08T08:31:06Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit activation.
We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network.
arXiv Detail & Related papers (2021-12-13T20:50:54Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.