Theory-experiment comparison for the Casimir force between metallic test
bodies: A spatially nonlocal dielectric response
- URL: http://arxiv.org/abs/2112.07283v2
- Date: Thu, 6 Jan 2022 08:37:20 GMT
- Title: Theory-experiment comparison for the Casimir force between metallic test
bodies: A spatially nonlocal dielectric response
- Authors: G. L. Klimchitskaya and V. M. Mostepanenko
- Abstract summary: Lifshitz theory of Casimir force comes into conflict with measurement data if conduction electrons in metals to electromagnetic fluctuations is described by the well tested dissipative Drude model.
Here, we propose the spatially nonlocal phenomenological dielectric functions of metals which lead to nearly the same response, as the standard Drude model, to the propagating waves, but to a different response in the case of evanescent waves.
Results are used to compute the effective Casimir pressure between two parallel plates, the Casimir force between a sphere and a plate, and its gradient in configurations of the most precise experiments performed with both non
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been known that the Lifshitz theory of the Casimir force comes into
conflict with the measurement data if the response of conduction electrons in
metals to electromagnetic fluctuations is described by the well tested
dissipative Drude model. The same theory is in a very good agreement with
measurements of the Casimir force from graphene whose spatially nonlocal
electromagnetic response is derived from the first principles of quantum
electrodynamics. Here, we propose the spatially nonlocal phenomenological
dielectric functions of metals which lead to nearly the same response, as the
standard Drude model, to the propagating waves, but to a different response in
the case of evanescent waves. Unlike some previous suggestions of this type,
the response functions considered here depend on all components of the wave
vector as is most natural in the formalism of specular reflection used. It is
shown that these response functions satisfy the Kramers-Kronig relations. We
derive respective expressions for the surface impedances and reflection
coefficients. The obtained results are used to compute the effective Casimir
pressure between two parallel plates, the Casimir force between a sphere and a
plate, and its gradient in configurations of the most precise experiments
performed with both nonmagnetic (Au) and magnetic (Ni) test bodies. It is shown
that in all cases (Au-Au, Au-Ni, and Ni-Ni test bodies) the predictions of the
Lifshitz theory found by using the dissipative nonlocal response functions are
in as good agreement with the measurement data, as was reached previously with
the dissipationless plasma model. Possible developments and applications of
these results are discussed.
Related papers
- Casimir Effect Invalidates the Drude Model for Transverse Electric
Evanescent Waves [0.0]
We consider the Casimir pressure between two metallic plates and calculate the four contributions to it determined by the propagating and evanescent waves and by the transverse magnetic and transverse electric polarizations of the electromagnetic field.
It is shown that the total transverse magnetic contribution to the Casimir pressure due to both the propagating and evanescent waves and the transverse electric contribution due to only the propagating waves, computed by means of the Drude model, correlate well with the corresponding results obtained using the plasma model.
arXiv Detail & Related papers (2023-10-21T14:39:45Z) - Comparison of the Lifshitz Theory Using the Nonconventional Fit of
Response Functions with Precise Measurements of the Casimir Force [0.0]
We analyze the nonconventional fit of response functions of many materials along the imaginary frequency axis.
We calculate the Casimir interaction in the configurations of several precise experiments using the Lifshitz theory.
arXiv Detail & Related papers (2023-05-04T07:30:12Z) - Experimentum crucis for electromagnetic response of metals to evanescent
waves and the Casimir puzzle [0.0]
Casimir force calculated at large separations using the Lifshitz theory differs by a factor of 2 for metals described by the Drude or plasma models.
We argue that this difference is entirely determined by the contribution of transverse electric (s) evanescent waves.
arXiv Detail & Related papers (2022-11-14T11:15:16Z) - Casimir effect for magnetic media: Spatially nonlocal response to the
off-shell quantum fluctuation [0.0]
We extend the Lifshitz theory of the Casimir force to the case of two parallel magnetic metal plates.
We compute the gradient of the Casimir force between Ni-coated surfaces of a sphere and a plate using the alternative nonlocal response functions.
arXiv Detail & Related papers (2021-10-04T09:50:58Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Casimir Puzzle and Casimir Conundrum: Discovery and Search for
Resolution [0.0]
The Casimir entropy calculated in the framework of the Lifshitz theory violates the Nernst heat theorem.
The review presents a summary of the main facts on this subject on both theoretical and experimental sides.
arXiv Detail & Related papers (2021-04-03T18:40:46Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z) - Casimir force between Weyl semimetals in a chiral medium [68.8204255655161]
We study the Casimir effect in a system composed of two Weyl semimetals separated by a gap filled with a chiral medium.
We find that if the medium between the two WSMs is a Faraday material, a repulsive Casimir force can be obtained.
arXiv Detail & Related papers (2020-01-28T14:08:45Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.