Operational models of temperature superpositions
- URL: http://arxiv.org/abs/2112.07860v3
- Date: Fri, 14 Jun 2024 03:46:27 GMT
- Title: Operational models of temperature superpositions
- Authors: Carolyn E. Wood, Harshit Verma, Fabio Costa, Magdalena Zych,
- Abstract summary: A quantum system and a thermal bath can reach thermal equilibrium through an interaction.
How does a delocalised quantum system thermalise with a bath whose local temperature varies?
We formulate two scenarios in which the notion of a superposition of temperatures'' may arise.
- Score: 0.09782246441301058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum system and a thermal bath can reach thermal equilibrium through an interaction, whereupon the system acquires the same temperature as the bath. But how does a delocalised quantum system thermalise with a bath whose local temperature varies, as, for example, in the Tolman effect? Here we formulate two scenarios in which the notion of a ``superposition of temperatures'' may arise. First: a probe interacting with two different baths dependent on the state of another quantum system (control). Second: a probe interacting with a single bath whose purified state is a superposition of states corresponding to different temperatures. We show that the two scenarios are fundamentally different and can be operationally distinguished. Moreover, we show that the probe does not in general thermalise even when the involved temperatures are equal, and that the final probe state is sensitive to the specific realisation of the thermalising channels. Our models may be applied to scenarios involving joint quantum, gravitational, and thermodynamic phenomena, and explain some recent results found in quantum intereference of relativistic probes thermalising with Unruh or Hawking radiation. Finally, we show that our results are reproduced in partial and pre-thermalisation processes, and thus our approach and conclusions hold beyond the idealised scenarios, where thermalisation is incomplete.
Related papers
- Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Heat transport in an optical lattice via Markovian feedback control [0.0]
We use Markovian feedback control to synthesize two effective thermal baths that couple to the boundaries of a one-dimensional Bose-Hubbard chain.
We investigate the steady-state heat current, including its scaling with system size and its response to disorder.
We provide a route for the quantum simulation of heat-current-carrying steady states of matter in atomic quantum gases.
arXiv Detail & Related papers (2022-07-27T16:35:24Z) - Operational definition of the temperature of a quantum state [0.0]
We define two effective temperatures for the ability of a quantum system to cool down or heat up a thermal environment.
We consider a more sophisticated scenario where the heat exchange between the system and the thermal environment is assisted by a quantum reference frame.
This leads to an effect of "coherent quantum coherence", where the use of a coherent catalyst allows for exploiting quantum energetic coherences in the system.
arXiv Detail & Related papers (2022-04-29T18:00:13Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Quantum Superposition of Two Temperatures [0.0]
We show that for a quantum system, it is possible to have superposition of two temperatures which can lead to a situation that it can be found both in hot and cold state.
Our findings can have new applications in quantum thermodynamics, quantum nano scale devices and quantum statistical mechanics.
arXiv Detail & Related papers (2021-12-20T17:40:44Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
arXiv Detail & Related papers (2021-03-16T09:31:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.