Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime
- URL: http://arxiv.org/abs/2103.08934v1
- Date: Tue, 16 Mar 2021 09:31:20 GMT
- Title: Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime
- Authors: Andr\'es Vallejo, Alejandro Romanelli and Ra\'ul Donangelo
- Abstract summary: We develop an alternative theoretical framework for the thermodynamic analysis of two-level systems.
We observe the appearance of a new term of work, which represents the energy cost of rotating the Bloch vector in presence of the external field that defines the local Hamiltonian.
In order to illustrate our findings we study, from both perspectives, matter-radiation interaction processes for two different systems.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considering an entropy-based division of energy transferred into heat and
work, we develop an alternative theoretical framework for the thermodynamic
analysis of two-level systems. When comparing these results with those obtained
under the standard definitions of these quantities, we observe the appearance
of a new term of work, which represents the energy cost of rotating the Bloch
vector in presence of the external field that defines the local Hamiltonian.
Additionally, we obtain explicit expressions for the temperature, the heat
capacity and the internal entropy production of the system in both paradigms.
In order to illustrate our findings we study, from both perspectives,
matter-radiation interaction processes for two different systems.
Related papers
- Quantum Thermodynamics of Open Quantum Systems: Nature of Thermal Fluctuations [0.0]
We investigate the thermodynamic behavior of open quantum systems through the Hamiltonian of Mean Force.
By analyzing both weak and strong coupling regimes, we uncover the impact of environmental interactions on quantum thermodynamic quantities.
arXiv Detail & Related papers (2024-07-31T13:18:06Z) - Asymmetries of thermal processes in open quantum systems [0.0]
An intriguing phenomenon in non-equilibrium quantum thermodynamics is the asymmetry of thermal processes.
We show that the free relaxation to thermal equilibrium follows intrinsically different paths depending on whether the temperature of the system increases (heating up) or decreases (cooling down)
Our theory is exemplified using the recently developed thermal kinematics based on information geometry theory.
arXiv Detail & Related papers (2024-06-28T11:07:21Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - First Law of Quantum Thermodynamics in a Driven Open Two-Level System [0.0]
We show how contributions originally assigned to dissipation in the Lindblad equation can become coherent part assigned to work.
Our results illustrate the trajectory-dependent character of heat and work, and how contributions originally assigned to dissipation can become coherent part assigned to work.
arXiv Detail & Related papers (2021-04-21T18:00:02Z) - Temperature of a finite-dimensional quantum system [68.8204255655161]
A general expression for the temperature of a finite-dimensional quantum system is deduced from thermodynamic arguments.
Explicit formulas for the temperature of two and three-dimensional quantum systems are presented.
arXiv Detail & Related papers (2020-05-01T07:47:50Z) - Entropy production in the quantum walk [62.997667081978825]
We focus on the study of the discrete-time quantum walk on the line, from the entropy production perspective.
We argue that the evolution of the coin can be modeled as an open two-level system that exchanges energy with the lattice at some effective temperature.
arXiv Detail & Related papers (2020-04-09T23:18:29Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - Quantum thermodynamics of two bosonic systems [0.0]
We study the energy exchange between two bosonic systems that interact via bilinear transformations in the mode operators.
This work finds its roots in a very recent formulation of quantum thermodynamics.
arXiv Detail & Related papers (2020-01-14T09:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.