Homography Decomposition Networks for Planar Object Tracking
- URL: http://arxiv.org/abs/2112.07909v2
- Date: Fri, 17 Dec 2021 12:01:28 GMT
- Title: Homography Decomposition Networks for Planar Object Tracking
- Authors: Xinrui Zhan, Yueran Liu, Jianke Zhu, Yang Li
- Abstract summary: Planar object tracking plays an important role in AI applications, such as robotics, visual servoing, and visual SLAM.
We propose a novel Homography Decomposition Networks(HDN) approach that drastically reduces and stabilizes the condition number by decomposing the homography transformation into two groups.
- Score: 11.558401177707312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planar object tracking plays an important role in AI applications, such as
robotics, visual servoing, and visual SLAM. Although the previous planar
trackers work well in most scenarios, it is still a challenging task due to the
rapid motion and large transformation between two consecutive frames. The
essential reason behind this problem is that the condition number of such a
non-linear system changes unstably when the searching range of the homography
parameter space becomes larger. To this end, we propose a novel Homography
Decomposition Networks~(HDN) approach that drastically reduces and stabilizes
the condition number by decomposing the homography transformation into two
groups. Specifically, a similarity transformation estimator is designed to
predict the first group robustly by a deep convolution equivariant network. By
taking advantage of the scale and rotation estimation with high confidence, a
residual transformation is estimated by a simple regression model. Furthermore,
the proposed end-to-end network is trained in a semi-supervised fashion.
Extensive experiments show that our proposed approach outperforms the
state-of-the-art planar tracking methods at a large margin on the challenging
POT, UCSB and POIC datasets.
Related papers
- ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras [33.81592783496106]
Event-based visual odometry aims at solving tracking and mapping sub-problems in parallel.
We build an event-based stereo visual-inertial odometry system on top of our previous direct pipeline Event-based Stereo Visual Odometry.
arXiv Detail & Related papers (2024-10-12T05:35:27Z) - Cross-domain and Cross-dimension Learning for Image-to-Graph
Transformers [50.576354045312115]
Direct image-to-graph transformation is a challenging task that solves object detection and relationship prediction in a single model.
We introduce a set of methods enabling cross-domain and cross-dimension transfer learning for image-to-graph transformers.
We demonstrate our method's utility in cross-domain and cross-dimension experiments, where we pretrain our models on 2D satellite images before applying them to vastly different target domains in 2D and 3D.
arXiv Detail & Related papers (2024-03-11T10:48:56Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
We propose a novel Dyna-Depthformer framework, which predicts scene depth and 3D motion field jointly.
Our contributions are two-fold. First, we leverage multi-view correlation through a series of self- and cross-attention layers in order to obtain enhanced depth feature representation.
Second, we propose a warping-based Motion Network to estimate the motion field of dynamic objects without using semantic prior.
arXiv Detail & Related papers (2023-01-14T09:43:23Z) - BTranspose: Bottleneck Transformers for Human Pose Estimation with
Self-Supervised Pre-Training [0.304585143845864]
In this paper, we consider the recently proposed Bottleneck Transformers, which combine CNN and multi-head self attention (MHSA) layers effectively.
We consider different backbone architectures and pre-train them using the DINO self-supervised learning method.
Experiments show that our model achieves an AP of 76.4, which is competitive with other methods such as [1] and has fewer network parameters.
arXiv Detail & Related papers (2022-04-21T15:45:05Z) - RAUM-VO: Rotational Adjusted Unsupervised Monocular Visual Odometry [0.0]
We present RAUM-VO, an approach based on a model-free epipolar constraint for frame-to-frame motion estimation.
RAUM-VO shows a considerable accuracy improvement compared to other unsupervised pose networks on the KITTI dataset.
arXiv Detail & Related papers (2022-03-14T15:03:24Z) - Poseur: Direct Human Pose Regression with Transformers [119.79232258661995]
We propose a direct, regression-based approach to 2D human pose estimation from single images.
Our framework is end-to-end differentiable, and naturally learns to exploit the dependencies between keypoints.
Ours is the first regression-based approach to perform favorably compared to the best heatmap-based pose estimation methods.
arXiv Detail & Related papers (2022-01-19T04:31:57Z) - Visual SLAM with Graph-Cut Optimized Multi-Plane Reconstruction [11.215334675788952]
This paper presents a semantic planar SLAM system that improves pose estimation and mapping using cues from an instance planar segmentation network.
While the mainstream approaches are using RGB-D sensors, employing a monocular camera with such a system still faces challenges such as robust data association and precise geometric model fitting.
arXiv Detail & Related papers (2021-08-09T18:16:08Z) - TransCamP: Graph Transformer for 6-DoF Camera Pose Estimation [77.09542018140823]
We propose a neural network approach with a graph transformer backbone, namely TransCamP, to address the camera relocalization problem.
TransCamP effectively fuses the image features, camera pose information and inter-frame relative camera motions into encoded graph attributes.
arXiv Detail & Related papers (2021-05-28T19:08:43Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z) - End-to-End Trainable Multi-Instance Pose Estimation with Transformers [68.93512627479197]
We propose a new end-to-end trainable approach for multi-instance pose estimation by combining a convolutional neural network with a transformer.
Inspired by recent work on end-to-end trainable object detection with transformers, we use a transformer encoder-decoder architecture together with a bipartite matching scheme to directly regress the pose of all individuals in a given image.
Our model, called POse Estimation Transformer (POET), is trained using a novel set-based global loss that consists of a keypoint loss, a keypoint visibility loss, a center loss and a class loss.
arXiv Detail & Related papers (2021-03-22T18:19:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.