Hi^2-GSLoc: Dual-Hierarchical Gaussian-Specific Visual Relocalization for Remote Sensing
- URL: http://arxiv.org/abs/2507.15683v1
- Date: Mon, 21 Jul 2025 14:47:56 GMT
- Title: Hi^2-GSLoc: Dual-Hierarchical Gaussian-Specific Visual Relocalization for Remote Sensing
- Authors: Boni Hu, Zhenyu Xia, Lin Chen, Pengcheng Han, Shuhui Bu,
- Abstract summary: Visual relocalization is fundamental to remote sensing and UAV applications.<n>Existing methods face inherent trade-offs: image-based retrieval and pose regression approaches lack precision.<n>We introduce $mathrmHi2$-GSLoc, a dual-hierarchical relocalization framework that follows a sparse-to-dense and coarse-to-fine paradigm.
- Score: 6.997091164331322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual relocalization, which estimates the 6-degree-of-freedom (6-DoF) camera pose from query images, is fundamental to remote sensing and UAV applications. Existing methods face inherent trade-offs: image-based retrieval and pose regression approaches lack precision, while structure-based methods that register queries to Structure-from-Motion (SfM) models suffer from computational complexity and limited scalability. These challenges are particularly pronounced in remote sensing scenarios due to large-scale scenes, high altitude variations, and domain gaps of existing visual priors. To overcome these limitations, we leverage 3D Gaussian Splatting (3DGS) as a novel scene representation that compactly encodes both 3D geometry and appearance. We introduce $\mathrm{Hi}^2$-GSLoc, a dual-hierarchical relocalization framework that follows a sparse-to-dense and coarse-to-fine paradigm, fully exploiting the rich semantic information and geometric constraints inherent in Gaussian primitives. To handle large-scale remote sensing scenarios, we incorporate partitioned Gaussian training, GPU-accelerated parallel matching, and dynamic memory management strategies. Our approach consists of two stages: (1) a sparse stage featuring a Gaussian-specific consistent render-aware sampling strategy and landmark-guided detector for robust and accurate initial pose estimation, and (2) a dense stage that iteratively refines poses through coarse-to-fine dense rasterization matching while incorporating reliability verification. Through comprehensive evaluation on simulation data, public datasets, and real flight experiments, we demonstrate that our method delivers competitive localization accuracy, recall rate, and computational efficiency while effectively filtering unreliable pose estimates. The results confirm the effectiveness of our approach for practical remote sensing applications.
Related papers
- ODG: Occupancy Prediction Using Dual Gaussians [38.9869091446875]
Occupancy prediction infers fine-grained 3D geometry and semantics from camera images of the surrounding environment.<n>Existing methods either adopt dense grids as scene representation, or learn the entire scene using a single set of sparse queries.<n>We present ODG, a hierarchical dual sparse Gaussian representation to effectively capture complex scene dynamics.
arXiv Detail & Related papers (2025-06-11T06:03:03Z) - RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS [79.15416002879239]
3D Gaussian Splatting has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling.<n>Existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images.<n>We propose RobustSplat, a robust solution based on two critical designs.
arXiv Detail & Related papers (2025-06-03T11:13:48Z) - Intern-GS: Vision Model Guided Sparse-View 3D Gaussian Splatting [95.61137026932062]
Intern-GS is a novel approach to enhance the process of sparse-view Gaussian splatting.<n>We show that Intern-GS achieves state-of-the-art rendering quality across diverse datasets.
arXiv Detail & Related papers (2025-05-27T05:17:49Z) - PanopticSplatting: End-to-End Panoptic Gaussian Splatting [20.04251473153725]
We propose PanopticSplatting, an end-to-end system for open-vocabulary panoptic reconstruction.<n>Our method introduces query-guided Gaussian segmentation with local cross attention, lifting 2D instance masks without cross-frame association.<n>Our method demonstrates strong performances in 3D scene panoptic reconstruction on the ScanNet-V2 and ScanNet++ datasets.
arXiv Detail & Related papers (2025-03-23T13:45:39Z) - PoI: A Filter to Extract Pixel of Interest from Novel View Synthesis for Scene Coordinate Regression [28.39136566857838]
Novel View Synthesis (NVS) techniques can augment camera pose estimation by extending and diversifying training data.<n>Images generated by these methods are often plagued by spatial artifacts such as blurring and ghosting.<n>We propose a dual-criteria filtering mechanism that dynamically identifies and discards suboptimal pixels during training.
arXiv Detail & Related papers (2025-02-07T11:24:23Z) - TSGaussian: Semantic and Depth-Guided Target-Specific Gaussian Splatting from Sparse Views [18.050257821756148]
TSGaussian is a novel framework that combines semantic constraints with depth priors to avoid geometry degradation in novel view synthesis tasks.<n>Our approach prioritizes computational resources on designated targets while minimizing background allocation.<n>Extensive experiments demonstrate that TSGaussian outperforms state-of-the-art methods on three standard datasets.
arXiv Detail & Related papers (2024-12-13T11:26:38Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.<n>We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.<n>Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS.<n>In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss.<n> Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.