Exploring the Asynchronous of the Frequency Spectra of GAN-generated
Facial Images
- URL: http://arxiv.org/abs/2112.08050v1
- Date: Wed, 15 Dec 2021 11:34:11 GMT
- Title: Exploring the Asynchronous of the Frequency Spectra of GAN-generated
Facial Images
- Authors: Binh M. Le and Simon S. Woo
- Abstract summary: We propose a new approach that explores the asynchronous frequency spectra of color channels, which is simple but effective for training both unsupervised and supervised learning models to distinguish GAN-based synthetic images.
Our experimental results show that the discrepancy of spectra in the frequency domain is a practical artifact to effectively detect various types of GAN-based generated images.
- Score: 19.126496628073376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progression of Generative Adversarial Networks (GANs) has raised a
concern of their misuse for malicious purposes, especially in creating fake
face images. Although many proposed methods succeed in detecting GAN-based
synthetic images, they are still limited by the need for large quantities of
the training fake image dataset and challenges for the detector's
generalizability to unknown facial images. In this paper, we propose a new
approach that explores the asynchronous frequency spectra of color channels,
which is simple but effective for training both unsupervised and supervised
learning models to distinguish GAN-based synthetic images. We further
investigate the transferability of a training model that learns from our
suggested features in one source domain and validates on another target domains
with prior knowledge of the features' distribution. Our experimental results
show that the discrepancy of spectra in the frequency domain is a practical
artifact to effectively detect various types of GAN-based generated images.
Related papers
- Spectrum Translation for Refinement of Image Generation (STIG) Based on
Contrastive Learning and Spectral Filter Profile [15.5188527312094]
We propose a framework to mitigate the disparity in frequency domain of the generated images.
This is realized by spectrum translation for the refinement of image generation (STIG) based on contrastive learning.
We evaluate our framework across eight fake image datasets and various cutting-edge models to demonstrate the effectiveness of STIG.
arXiv Detail & Related papers (2024-03-08T06:39:24Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - Intriguing properties of synthetic images: from generative adversarial
networks to diffusion models [19.448196464632]
It is important to gain insight into which image features better discriminate fake images from real ones.
In this paper we report on our systematic study of a large number of image generators of different families, aimed at discovering the most forensically relevant characteristics of real and generated images.
arXiv Detail & Related papers (2023-04-13T11:13:19Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Explicit Use of Fourier Spectrum in Generative Adversarial Networks [0.0]
We show that there is a dissimilarity between the spectrum of authentic images and fake ones.
We propose a new model to reduce the discrepancies between the spectrum of the actual and fake images.
We experimentally show promising improvements in the quality of the generated images.
arXiv Detail & Related papers (2022-08-02T06:26:44Z) - Detecting High-Quality GAN-Generated Face Images using Neural Networks [23.388645531702597]
We propose a new strategy to differentiate GAN-generated images from authentic images by leveraging spectral band discrepancies.
In particular, we enable the digital preservation of face images using the Cross-band co-occurrence matrix and spatial co-occurrence matrix.
We show that the performance boost is particularly significant and achieves more than 92% in different post-processing environments.
arXiv Detail & Related papers (2022-03-03T13:53:27Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
We present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery.
SPSL can achieve the state-of-the-art performance on cross-datasets evaluation as well as multi-class classification and obtain comparable results on single dataset evaluation.
arXiv Detail & Related papers (2021-03-02T16:45:08Z) - CNN Detection of GAN-Generated Face Images based on Cross-Band
Co-occurrences Analysis [34.41021278275805]
Last-generation GAN models allow to generate synthetic images which are visually indistinguishable from natural ones.
We propose a method for distinguishing GAN-generated from natural images by exploiting inconsistencies among spectral bands.
arXiv Detail & Related papers (2020-07-25T10:55:04Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
We show that learning to synthesize images can bring remarkable hierarchical visual features that are generalizable across a wide range of applications.
The visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has strong transferability to both generative and discriminative tasks.
arXiv Detail & Related papers (2020-07-20T18:04:14Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.