Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis
- URL: http://arxiv.org/abs/2105.14376v1
- Date: Sat, 29 May 2021 21:22:24 GMT
- Title: Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis
- Authors: Yang He and Ning Yu and Margret Keuper and Mario Fritz
- Abstract summary: Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
- Score: 69.09526348527203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advances in deep generative models over the past years have led to
highly {realistic media, known as deepfakes,} that are commonly
indistinguishable from real to human eyes. These advances make assessing the
authenticity of visual data increasingly difficult and pose a misinformation
threat to the trustworthiness of visual content in general. Although recent
work has shown strong detection accuracy of such deepfakes, the success largely
relies on identifying frequency artifacts in the generated images, which will
not yield a sustainable detection approach as generative models continue
evolving and closing the gap to real images. In order to overcome this issue,
we propose a novel fake detection that is designed to re-synthesize testing
images and extract visual cues for detection. The re-synthesis procedure is
flexible, allowing us to incorporate a series of visual tasks - we adopt
super-resolution, denoising and colorization as the re-synthesis. We
demonstrate the improved effectiveness, cross-GAN generalization, and
robustness against perturbations of our approach in a variety of detection
scenarios involving multiple generators over CelebA-HQ, FFHQ, and LSUN
datasets. Source code is available at
https://github.com/SSAW14/BeyondtheSpectrum.
Related papers
- Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
We propose a proactive and sustainable deepfake training augmentation solution.
We employ a pool of autoencoders that mimic the effect of the artefacts introduced by the deepfake generator models.
Experiments reveal that our proposed ensemble autoencoder-based data augmentation learning approach offers improvements in terms of generalisation.
arXiv Detail & Related papers (2024-03-29T19:09:08Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
Deep generative models can create remarkably fake images while raising concerns about misinformation and copyright infringement.
Deepfake detection technique is developed to distinguish between real and fake images.
We propose a novel approach called AntifakePrompt, using Vision-Language Models and prompt tuning techniques.
arXiv Detail & Related papers (2023-10-26T14:23:45Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.