論文の概要: Decomposing Natural Logic Inferences in Neural NLI
- arxiv url: http://arxiv.org/abs/2112.08289v1
- Date: Wed, 15 Dec 2021 17:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-16 15:23:20.016265
- Title: Decomposing Natural Logic Inferences in Neural NLI
- Title(参考訳): ニューラルNLIにおける自然論理推論の分解
- Authors: Julia Rozanova, Deborah Ferreira, Marco Valentino, Mokanrarangan
Thayaparan, Andre Freitas
- Abstract要約: ニューラルNLIモデルは、単調性や概念包摂性といった、自然論理の中心となる重要な意味的特徴を捉えているかどうかを考察する。
ベンチマークで高いスコアを得る人気NLIモデルの表現において、モノトニック性情報は顕著に弱いことが判明した。
- 参考スコア(独自算出の注目度): 2.624902795082451
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the interest of interpreting neural NLI models and their reasoning
strategies, we carry out a systematic probing study which investigates whether
these models capture the crucial semantic features central to natural logic:
monotonicity and concept inclusion. Correctly identifying valid inferences in
downward-monotone contexts is a known stumbling block for NLI performance,
subsuming linguistic phenomena such as negation scope and generalized
quantifiers. To understand this difficulty, we emphasize monotonicity as a
property of a context and examine the extent to which models capture
monotonicity information in the contextual embeddings which are intermediate to
their decision making process. Drawing on the recent advancement of the probing
paradigm, we compare the presence of monotonicity features across various
models. We find that monotonicity information is notably weak in the
representations of popular NLI models which achieve high scores on benchmarks,
and observe that previous improvements to these models based on fine-tuning
strategies have introduced stronger monotonicity features together with their
improved performance on challenge sets.
- Abstract(参考訳): ニューラルNLIモデルとその推論戦略の解釈に関心を寄せ、これらのモデルが自然論理の中心となる重要な意味的特徴(単調性と概念包摂性)を捉えているかどうかを調査する。
下向き単調な文脈における妥当な推論を正しく特定することは、否定範囲や一般化量化器といった言語現象を仮定して、NLIのパフォーマンスの揺らぎとして知られている。
この難しさを理解するため,我々は,文脈の性質としてモノトニック性を強調し,意思決定プロセスに中間の文脈埋め込みにおいて,モデルがモノトニック性情報を取得する程度を検討する。
調査パラダイムの最近の進歩をふまえて,様々なモデルにまたがる単調性特徴の比較を行った。
ベンチマークで高いスコアを得るNLIモデルの表現において、単調性情報は顕著に弱く、微調整戦略に基づくこれらのモデルに対する以前の改良は、より強力な単調性機能を導入し、課題セットの性能を改善した。
関連論文リスト
- Beyond Interpretability: The Gains of Feature Monosemanticity on Model Robustness [68.69369585600698]
ディープラーニングモデルは多意味性による解釈可能性の欠如に悩まされることが多い。
神経細胞が一貫したセマンティクスと異なるセマンティクスに対応するモノセマンティクスの最近の進歩は、解釈可能性を大幅に改善した。
モノセマンティックな特徴は解釈可能性を高めるだけでなく、モデル性能の具体的な向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-27T18:03:20Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - MonoKAN: Certified Monotonic Kolmogorov-Arnold Network [48.623199394622546]
特定のアプリケーションでは、モデル予測は専門家が提案した要件と一致し、時には部分的な単調性制約によって例示されなければならない。
我々は,kanアーキテクチャに基づく新しいANNアーキテクチャMonoKANを導入し,解釈性を高めつつ,認証された部分的単調性を実現する。
実験の結果,MonoKANは解釈可能性を高めるだけでなく,ほとんどのベンチマークにおける予測性能も向上し,最先端のモノトニックアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-09-17T11:10:59Z) - Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
自然言語推論(NLI)の未探索課題に注目点を当てた。
我々は、広範囲な実験を通じて、モデルに依存しない防衛戦略として、自然言語説明の使用を検証した。
本研究では,広範に使用されている言語生成指標と人間の知覚との相関について検討し,それらが堅牢なNLIモデルへのプロキシとして機能するようにした。
論文 参考訳(メタデータ) (2024-09-11T17:09:49Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Supporting Context Monotonicity Abstractions in Neural NLI Models [2.624902795082451]
特定の NLI 問題では、包含ラベルは文脈の単調性と置換概念間の関係にのみ依存する。
抽象単位としての文脈処理を記述した、健全で簡略化された単調性論理形式論を紹介します。
フォーマリズムにおける概念を用いて、ターゲットとするチャレンジセットを適応させ、中間コンテキストのモノトニック性分類タスクがNLIモデルのパフォーマンスを補助するかどうかを検討する。
論文 参考訳(メタデータ) (2021-05-17T16:43:43Z) - Exploring Transitivity in Neural NLI Models through Veridicality [39.845425535943534]
推論関係の推移性に着目する。推論を体系的に描く基本的な性質である。
推移性をキャプチャするモデルは、基本的な推論パターンを構成し、新しい推論を引き出すことができる。
現在のNLIモデルは、推移性推論タスクで一貫してうまく機能しないことがわかります。
論文 参考訳(メタデータ) (2021-01-26T11:18:35Z) - Exploring End-to-End Differentiable Natural Logic Modeling [21.994060519995855]
ニューラルネットワークに自然言語を統合する、エンドツーエンドでトレーニングされた差別化可能なモデルについて検討する。
提案モデルでは,モジュールネットワークを用いて自然言語操作をモデル化し,メモリコンポーネントで拡張してコンテキスト情報をモデル化する。
論文 参考訳(メタデータ) (2020-11-08T18:18:15Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z) - Neural Natural Language Inference Models Partially Embed Theories of
Lexical Entailment and Negation [14.431925736607043]
本研究は, 語彙的含意と否定に焦点をあてた新しい自然主義的データセットであるモノトニック性NLI(MoNLI)について述べる。
行動評価では、汎用NLIデータセットでトレーニングされたモデルは、否定を含むMoNLIの例で体系的に失敗する。
構造評価では,トップパフォーマンスのBERTベースのモデルが,MoNLIの背後にある単調性アルゴリズムを実装することを学習したことを示す。
論文 参考訳(メタデータ) (2020-04-30T07:53:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。