論文の概要: Nirikshak: A Clustering Based Autonomous API Testing Framework
- arxiv url: http://arxiv.org/abs/2112.08315v3
- Date: Wed, 22 Nov 2023 17:30:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 19:38:58.626357
- Title: Nirikshak: A Clustering Based Autonomous API Testing Framework
- Title(参考訳): nirikshak: クラスタリングベースの自律型apiテスティングフレームワーク
- Authors: Yash Mahalwal, Pawel Pratyush, Yogesh Poonia
- Abstract要約: Nirikshakは、REST APIテストのための自立テストフレームワークである。
REST APIテスト手順の実行において、レベル2の自律性を達成する。
Nirikshakはコミュニティ向けのオープンソースソフトウェアとしてhttps://github.com/yashmahalwal/nirikshakで公開されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quality Assurance (QA) is a critical component in product development,
particularly in software testing. Despite the evolution of automated methods,
testing for REST APIs often involves repetitive tasks. A significant portion of
resources is dedicated more to scripting tests than to detecting and resolving
actual software bugs. Additionally, conventional testing methods frequently
struggle to adapt to software updates. However, with advancements in data
science, a new paradigm is emerging: a self-reliant testing framework. This
innovative approach minimizes the need for user intervention, achieving level 2
of autonomy in executing REST API testing procedures. It does so by employing a
clustering method and analysis on logs categorizing test cases efficiently and
thereby streamlining the testing process as well as ensuring more dynamic
adaptability to software changes. Nirikshak is publicly available as an
open-source software for the community at
https://github.com/yashmahalwal/nirikshak.
- Abstract(参考訳): 品質保証(QA)は、特にソフトウェアテストにおいて、製品開発において重要なコンポーネントである。
自動メソッドの進化にもかかわらず、REST APIのテストは繰り返しタスクを伴うことが多い。
リソースの大部分は、実際のソフトウェアバグの検出と解決よりも、スクリプティングテストに費やされている。
さらに、従来のテスト手法はソフトウェア更新に適応するのにしばしば苦労する。
しかし、データサイエンスの進歩に伴い、自己回復テストフレームワークという新たなパラダイムが生まれている。
この革新的なアプローチは、ユーザの介入の必要性を最小限に抑え、REST APIテスト手順の実行において、レベルの2の自律性を達成する。
クラスタリング手法とログの分析を使用して、テストケースを効率的に分類し、テストプロセスの合理化と、ソフトウェアの変更に対するよりダイナミックな適応性を保証する。
Nirikshakはコミュニティ向けのオープンソースソフトウェアとしてhttps://github.com/yashmahalwal/nirikshakで公開されている。
関連論文リスト
- A Multi-Agent Approach for REST API Testing with Semantic Graphs and LLM-Driven Inputs [46.65963514391019]
私たちは、REST APIテストに依存性組み込みのマルチエージェントアプローチを採用する最初のブラックボックスフレームワークであるAutoRestTestを紹介します。
MARL(Multi-Agent Reinforcement Learning)とSPDG(Semantic Property Dependency Graph)とLLM(Large Language Models)を統合した。
このアプローチでは、REST APIテストを、API、依存性、パラメータ、バリューという4つのエージェントが協力して、API探索を最適化する、分離可能な問題として扱います。
論文 参考訳(メタデータ) (2024-11-11T16:20:27Z) - Multi-language Unit Test Generation using LLMs [6.259245181881262]
静的解析を組み込んだジェネリックパイプラインを記述し,コンパイル可能な高カバレッジテストケースの生成においてLCMをガイドする。
パイプラインをさまざまなプログラミング言語、特にJavaとPython、そして環境モックを必要とする複雑なソフトウェアに適用する方法を示します。
以上の結果から,静的解析によって導かれるLCMベースのテスト生成は,最新のテスト生成技術と競合し,さらに性能も向上することが示された。
論文 参考訳(メタデータ) (2024-09-04T21:46:18Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
大規模言語モデル(LLM)はソフトウェア開発の様々な側面に適用されている。
Javaプロジェクトのテストスイートを生成する自動化システムであるAgoneTestを紹介します。
論文 参考訳(メタデータ) (2024-08-14T23:02:16Z) - KAT: Dependency-aware Automated API Testing with Large Language Models [1.7264233311359707]
KAT(Katalon API Testing)は、APIを検証するためのテストケースを自律的に生成する、AI駆動の新たなアプローチである。
実世界の12のサービスを用いたKATの評価は、検証カバレッジを改善し、文書化されていないステータスコードを検出し、これらのサービスの偽陽性を低減できることを示している。
論文 参考訳(メタデータ) (2024-07-14T14:48:18Z) - COTS: Connected OpenAPI Test Synthesis for RESTful Applications [0.0]
OpenAPI仕様のための(i)ドメイン固有言語を導入し、(ii)方法論をサポートするツールを導入します。
私たちのツールはCOTSと呼ばれ、(ランダムに)モデルベースのテスト実行を生成し、ソフトウェア欠陥を報告します。
論文 参考訳(メタデータ) (2024-04-30T15:12:31Z) - Automating REST API Postman Test Cases Using LLM [0.0]
本稿では,大規模言語モデルを用いたテストケースの自動生成手法の探索と実装について述べる。
この方法論は、テストケース生成の効率性と有効性を高めるために、Open AIの使用を統合する。
この研究で開発されたモデルは、手作業で収集したポストマンテストケースやさまざまなRest APIのインスタンスを使ってトレーニングされている。
論文 参考訳(メタデータ) (2024-04-16T15:53:41Z) - Towards Automatic Generation of Amplified Regression Test Oracles [44.45138073080198]
回帰テストオラクルを増幅するためのテストオラクル導出手法を提案する。
このアプローチはテスト実行中にオブジェクトの状態を監視し、以前のバージョンと比較して、SUTの意図した振る舞いに関連する変更を検出する。
論文 参考訳(メタデータ) (2023-07-28T12:38:44Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
本稿では、オブジェクト検出におけるアクティブラーニングを評価するために、ALBenchという名前のアクティブラーニングベンチマークフレームワークをコントリビュートする。
自動深層モデルトレーニングシステム上で開発されたこのALBenchフレームワークは、使いやすく、さまざまなアクティブな学習アルゴリズムと互換性があり、同じトレーニングおよびテストプロトコルを保証する。
論文 参考訳(メタデータ) (2022-07-27T07:46:23Z) - SUPERNOVA: Automating Test Selection and Defect Prevention in AAA Video
Games Using Risk Based Testing and Machine Learning [62.997667081978825]
従来の手法では、成長するソフトウェアシステムではスケールできないため、ビデオゲームのテストはますます難しいタスクになります。
自動化ハブとして機能しながら,テスト選択と欠陥防止を行うシステム SUPERNOVA を提案する。
この直接的な影響は、未公表のスポーツゲームタイトルの55%以上のテスト時間を減らすことが観察されている。
論文 参考訳(メタデータ) (2022-03-10T00:47:46Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList は NLP モデルをテストするためのタスクに依存しない方法論である。
CheckListには、包括的なテストのアイデアを促進する一般的な言語機能とテストタイプのマトリックスが含まれている。
ユーザスタディでは、CheckListのNLP実践者が2倍の数のテストを作成し、それのないユーザの約3倍のバグを発見しました。
論文 参考訳(メタデータ) (2020-05-08T15:48:31Z) - Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement
Learning Framework [68.96770035057716]
A/Bテスト(A/B Testing)は、新しい製品を製薬、技術、伝統産業の古い製品と比較するビジネス戦略である。
本稿では,オンライン実験においてA/Bテストを実施するための強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-05T10:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。