Estimating Uncertainty For Vehicle Motion Prediction on Yandex Shifts
Dataset
- URL: http://arxiv.org/abs/2112.08355v1
- Date: Wed, 15 Dec 2021 18:58:55 GMT
- Title: Estimating Uncertainty For Vehicle Motion Prediction on Yandex Shifts
Dataset
- Authors: Alexey Pustynnikov, Dmitry Eremeev
- Abstract summary: This work focuses on developing models which are robust to distributional shift and able to measure uncertainty of their predictions.
In this work we present the approach that significantly improved provided benchmark and took 2nd place on the leaderboard.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion prediction of surrounding agents is an important task in context of
autonomous driving since it is closely related to driver's safety. Vehicle
Motion Prediction (VMP) track of Shifts Challenge focuses on developing models
which are robust to distributional shift and able to measure uncertainty of
their predictions. In this work we present the approach that significantly
improved provided benchmark and took 2nd place on the leaderboard.
Related papers
- Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
This study proposes a trajectory prediction framework that combines Mixture Density Networks (MDN) and considers the driving heterogeneity to provide probabilistic and personalized predictions.
The proposed framework is tested based on a wide-range vehicle trajectory dataset.
arXiv Detail & Related papers (2023-12-19T12:56:56Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
We pioneer a novel behavior-aware trajectory prediction model (BAT)
Our model consists of behavior-aware, interaction-aware, priority-aware, and position-aware modules.
We evaluate BAT's performance across the Next Generation Simulation (NGSIM), Highway Drone (HighD), Roundabout Drone (RounD), and Macao Connected Autonomous Driving (MoCAD) datasets.
arXiv Detail & Related papers (2023-12-11T13:27:51Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
Motion TRansformer (MTR) models motion prediction as the joint optimization of global intention localization and local movement refinement.
MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges.
arXiv Detail & Related papers (2022-09-27T16:23:14Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Transformer based trajectory prediction [71.31516599226606]
We present a simple and yet strong baseline for uncertainty aware motion prediction based purely on transformer neural networks.
While being easy-to-implement, the proposed approach achieves competitive performance and ranks 1$st$ on the 2021 Shifts Vehicle Motion Prediction Competition.
arXiv Detail & Related papers (2021-12-08T16:00:14Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Beelines: Motion Prediction Metrics for Self-Driving Safety and Comfort [4.670814682436471]
We propose two complementary metrics that quantify the effects of motion prediction on safety.
Our safety metric has a significantly better signal-to-noise ratio than displacement error in identifying unsafe events.
arXiv Detail & Related papers (2020-11-01T01:09:23Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.