論文の概要: torch.fx: Practical Program Capture and Transformation for Deep Learning
in Python
- arxiv url: http://arxiv.org/abs/2112.08429v1
- Date: Wed, 15 Dec 2021 19:16:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 15:46:15.087096
- Title: torch.fx: Practical Program Capture and Transformation for Deep Learning
in Python
- Title(参考訳): torch.fx: Pythonのディープラーニングのための実用的なプログラムキャプチャと変換
- Authors: James K. Reed (Facebook AI), Zachary DeVito (Facebook AI), Horace He
(Facebook AI), Ansley Ussery (Facebook AI), Jason Ansel (Facebook AI)
- Abstract要約: 深層学習に使用されるプログラムキャプチャと変換の異なる設計について検討する。
長い尾ではなく典型的なディープラーニングのユースケースのために設計することで、プログラムのキャプチャと変換のためのシンプルなフレームワークを構築することができる。
我々は、Pythonで完全に書かれ、ML実践者による高い開発者の生産性のために最適化されたPyTorch用のプログラムキャプチャと変換ライブラリである torch.fx にこの原則を適用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern deep learning frameworks provide imperative, eager execution
programming interfaces embedded in Python to provide a productive development
experience. However, deep learning practitioners sometimes need to capture and
transform program structure for performance optimization, visualization,
analysis, and hardware integration. We study the different designs for program
capture and transformation used in deep learning. By designing for typical deep
learning use cases rather than long tail ones, it is possible to create a
simpler framework for program capture and transformation. We apply this
principle in torch.fx, a program capture and transformation library for PyTorch
written entirely in Python and optimized for high developer productivity by ML
practitioners. We present case studies showing how torch.fx enables workflows
previously inaccessible in the PyTorch ecosystem.
- Abstract(参考訳): 現代のディープラーニングフレームワークは、Pythonに組み込まれた命令型で熱心な実行プログラミングインターフェースを提供し、生産的な開発エクスペリエンスを提供します。
しかし、ディープラーニングの実践者は、パフォーマンス最適化、可視化、分析、ハードウェア統合のためのプログラム構造をキャプチャして変換する必要があることがある。
深層学習に使用されるプログラムキャプチャと変換の異なる設計について検討する。
長い尾ではなく典型的なディープラーニングのユースケースのために設計することで、プログラムのキャプチャと変換のためのシンプルなフレームワークを構築することができる。
我々は、Pythonで完全に書かれ、ML実践者による高い開発者の生産性のために最適化されたPyTorch用のプログラムキャプチャと変換ライブラリである torch.fx にこの原則を適用した。
torch.fxが以前PyTorchエコシステムでアクセスできなかったワークフローをどのように実現しているかを示すケーススタディを示す。
関連論文リスト
- depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers [92.13613958373628]
textttdepyfは、PyTorchコンパイラの内部動作を復号化するためのツールである。
textttdepyfは、PyTorchが生成したバイトコードを等価なソースコードに逆コンパイルする。
論文 参考訳(メタデータ) (2024-03-14T16:17:14Z) - TorchProbe: Fuzzing Dynamic Deep Learning Compilers [9.324205843411352]
PyTorch 2.0はPythonで任意のディープラーニングプログラムのコンパイルをサポートする。
動的特徴を含むテストケースを生成するためのコード変換を提案する。
我々は、PyTorchコンパイラとその基盤となるテンソルコンパイラTritonの20の既知のバグを特定した。
論文 参考訳(メタデータ) (2023-10-30T23:20:47Z) - Continual Inference: A Library for Efficient Online Inference with Deep
Neural Networks in PyTorch [97.03321382630975]
Continual Inferenceは、PyTorchでContinuous Inference Networks(CIN)を実装するPythonライブラリである。
我々は、CINとその実装を包括的に紹介し、現代のディープラーニングのための複雑なモジュールを構成するためのベストプラクティスとコード例を提供します。
論文 参考訳(メタデータ) (2022-04-07T13:03:09Z) - Extending Python for Quantum-Classical Computing via Quantum
Just-in-Time Compilation [78.8942067357231]
Pythonは、その柔軟性、ユーザビリティ、可読性、開発者の生産性を重視することで有名な人気のあるプログラミング言語です。
量子ジャスト・イン・タイム・コンパイルのための堅牢なC++インフラストラクチャを通じて、異種量子古典計算を可能にするPythonの言語拡張を提案する。
論文 参考訳(メタデータ) (2021-05-10T21:11:21Z) - Using Python for Model Inference in Deep Learning [0.6027358520885614]
pythonで推論を実行しながら、パフォーマンスとパッケージングの制約を満たす方法を示します。
複数のPythonインタプリタを単一のプロセスで使用して,スケーラブルな推論を実現する方法を提案する。
論文 参考訳(メタデータ) (2021-04-01T04:48:52Z) - PyLightcurve-torch: a transit modelling package for deep learning
applications in PyTorch [0.0]
我々はPyLightcurveとPyTorchをベースにした新しいオープンソースpythonパッケージを提案する。
効率的な計算と外惑星トランジットの自動分化のために調整されている。
論文 参考訳(メタデータ) (2020-11-03T22:05:41Z) - TorchIO: A Python library for efficient loading, preprocessing,
augmentation and patch-based sampling of medical images in deep learning [68.8204255655161]
我々はTorchIOというオープンソースのPythonライブラリを紹介し、ディープラーニングのための医療画像の効率的なロード、前処理、拡張、パッチベースのサンプリングを可能にする。
TorchIOはPyTorchのスタイルに従い、標準的な医用画像処理ライブラリを統合して、ニューラルネットワークのトレーニング中に画像を効率的に処理する。
Pythonを使わずに、画像ファイルに変換を適用できるコマンドラインインターフェースが含まれている。
論文 参考訳(メタデータ) (2020-03-09T13:36:16Z) - fastai: A Layered API for Deep Learning [1.7223564681760164]
fastaiは、実践者に高度なコンポーネントを提供するディープラーニングライブラリである。
これは研究者に、新しいアプローチを構築するために混在し、マッチできる低レベルのコンポーネントを提供する。
論文 参考訳(メタデータ) (2020-02-11T21:16:48Z) - Torch-Struct: Deep Structured Prediction Library [138.5262350501951]
本稿では,構造化予測ライブラリTorch-Structを紹介する。
Torch-Structには,シンプルで柔軟な分散ベースのAPIを通じてアクセスされる,確率的構造の広範なコレクションが含まれている。
論文 参考訳(メタデータ) (2020-02-03T16:43:02Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
本稿では,OPFythonと表記されるPythonベースのOptimum-Path Forestフレームワークを提案する。
OPFythonはPythonベースのライブラリなので、C言語よりもフレンドリーな環境とプロトタイピングの作業スペースを提供する。
論文 参考訳(メタデータ) (2020-01-28T15:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。