Gaining Outlier Resistance with Progressive Quantiles: Fast Algorithms
and Theoretical Studies
- URL: http://arxiv.org/abs/2112.08471v3
- Date: Tue, 18 Apr 2023 18:10:24 GMT
- Title: Gaining Outlier Resistance with Progressive Quantiles: Fast Algorithms
and Theoretical Studies
- Authors: Yiyuan She, Zhifeng Wang, Jiahui Shen
- Abstract summary: A framework of outlier-resistant estimation is introduced to robustify arbitrarily loss function.
A new technique is proposed to alleviate the requirement on starting point such that on regular datasets the number of data reestimations can be substantially reduced.
The obtained estimators, though not necessarily globally or even globally, enjoymax optimality in both low dimensions.
- Score: 1.6457778420360534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Outliers widely occur in big-data applications and may severely affect
statistical estimation and inference. In this paper, a framework of
outlier-resistant estimation is introduced to robustify an arbitrarily given
loss function. It has a close connection to the method of trimming and includes
explicit outlyingness parameters for all samples, which in turn facilitates
computation, theory, and parameter tuning. To tackle the issues of nonconvexity
and nonsmoothness, we develop scalable algorithms with implementation ease and
guaranteed fast convergence. In particular, a new technique is proposed to
alleviate the requirement on the starting point such that on regular datasets,
the number of data resamplings can be substantially reduced. Based on combined
statistical and computational treatments, we are able to perform nonasymptotic
analysis beyond M-estimation. The obtained resistant estimators, though not
necessarily globally or even locally optimal, enjoy minimax rate optimality in
both low dimensions and high dimensions. Experiments in regression,
classification, and neural networks show excellent performance of the proposed
methodology at the occurrence of gross outliers.
Related papers
- Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
Training machine learning and statistical models often involve optimizing a data-driven risk criterion.
We propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences.
For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations.
arXiv Detail & Related papers (2024-01-28T21:19:15Z) - Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [9.940560505044122]
We propose a method to improve the efficiency and accuracy of amortized Bayesian inference.
We estimate the marginal likelihood based on approximate representations of the joint model.
arXiv Detail & Related papers (2023-10-06T17:41:41Z) - Best Subset Selection in Reduced Rank Regression [1.4699455652461724]
We show that our algorithm can achieve the reduced rank estimation with a significant probability.
The numerical studies and an application in the cancer studies demonstrate effectiveness and scalability.
arXiv Detail & Related papers (2022-11-29T02:51:15Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Differential privacy and robust statistics in high dimensions [49.50869296871643]
High-dimensional Propose-Test-Release (HPTR) builds upon three crucial components: the exponential mechanism, robust statistics, and the Propose-Test-Release mechanism.
We show that HPTR nearly achieves the optimal sample complexity under several scenarios studied in the literature.
arXiv Detail & Related papers (2021-11-12T06:36:40Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z) - Nonconvex sparse regularization for deep neural networks and its
optimality [1.9798034349981162]
Deep neural network (DNN) estimators can attain optimal convergence rates for regression and classification problems.
We propose a novel penalized estimation method for sparse DNNs.
We prove that the sparse-penalized estimator can adaptively attain minimax convergence rates for various nonparametric regression problems.
arXiv Detail & Related papers (2020-03-26T07:15:28Z) - An Optimal Statistical and Computational Framework for Generalized
Tensor Estimation [10.899518267165666]
This paper describes a flexible framework for low-rank tensor estimation problems.
It includes many important instances from applications in computational imaging, genomics, and network analysis.
arXiv Detail & Related papers (2020-02-26T01:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.