Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
- URL: http://arxiv.org/abs/2310.04395v4
- Date: Tue, 23 Jul 2024 12:55:13 GMT
- Title: Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference
- Authors: Marvin Schmitt, Desi R. Ivanova, Daniel Habermann, Ullrich Köthe, Paul-Christian Bürkner, Stefan T. Radev,
- Abstract summary: We propose a method to improve the efficiency and accuracy of amortized Bayesian inference.
We estimate the marginal likelihood based on approximate representations of the joint model.
- Score: 9.940560505044122
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a method to improve the efficiency and accuracy of amortized Bayesian inference by leveraging universal symmetries in the joint probabilistic model of parameters and data. In a nutshell, we invert Bayes' theorem and estimate the marginal likelihood based on approximate representations of the joint model. Upon perfect approximation, the marginal likelihood is constant across all parameter values by definition. However, errors in approximate inference lead to undesirable variance in the marginal likelihood estimates across different parameter values. We penalize violations of this symmetry with a \textit{self-consistency loss} which significantly improves the quality of approximate inference in low data regimes and can be used to augment the training of popular neural density estimators. We apply our method to a number of synthetic problems and realistic scientific models, discovering notable advantages in the context of both neural posterior and likelihood approximation.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
We propose a scalable variational Bayes method for statistical inference in sparse linear regression.
Our approach relies on assigning a mean-field approximation to the nuisance coordinates.
This requires only a preprocessing step and preserves the computational advantages of mean-field variational Bayes.
arXiv Detail & Related papers (2024-06-18T14:27:44Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Optimal convex $M$-estimation via score matching [6.115859302936817]
We construct a data-driven convex loss function with respect to which empirical risk minimisation yields optimal variance in the downstream estimation of the regression coefficients.
Our semiparametric approach targets the best decreasing approximation of the derivative of the derivative of the log-density of the noise distribution.
arXiv Detail & Related papers (2024-03-25T12:23:19Z) - Robust probabilistic inference via a constrained transport metric [8.85031165304586]
We offer a novel alternative by constructing an exponentially tilted empirical likelihood carefully designed to concentrate near a parametric family of distributions.
The proposed approach finds applications in a wide variety of robust inference problems, where we intend to perform inference on the parameters associated with the centering distribution.
We demonstrate superior performance of our methodology when compared against state-of-the-art robust Bayesian inference methods.
arXiv Detail & Related papers (2023-03-17T16:10:06Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Maximum likelihood estimation and uncertainty quantification for
Gaussian process approximation of deterministic functions [10.319367855067476]
This article provides one of the first theoretical analyses in the context of Gaussian process regression with a noiseless dataset.
We show that the maximum likelihood estimation of the scale parameter alone provides significant adaptation against misspecification of the Gaussian process model.
arXiv Detail & Related papers (2020-01-29T17:20:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.