Learning to acquire novel cognitive tasks with evolution, plasticity and
meta-meta-learning
- URL: http://arxiv.org/abs/2112.08588v1
- Date: Thu, 16 Dec 2021 03:18:01 GMT
- Title: Learning to acquire novel cognitive tasks with evolution, plasticity and
meta-meta-learning
- Authors: Thomas Miconi
- Abstract summary: In meta-learning, networks are trained with external algorithms to learn tasks that require acquiring, storing and exploiting unpredictable information for each new instance of the task.
Here we evolve neural networks, endowed with plastic connections, over a sizable set of simple meta-learning tasks based on a neuroscience modelling framework.
The resulting evolved network can automatically acquire a novel simple cognitive task, never seen during training, through the spontaneous operation of its evolved neural organization and plasticity structure.
- Score: 3.8073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In meta-learning, networks are trained with external algorithms to learn
tasks that require acquiring, storing and exploiting unpredictable information
for each new instance of the task. However, animals are able to pick up such
cognitive tasks automatically, as a result of their evolved neural architecture
and synaptic plasticity mechanisms. Here we evolve neural networks, endowed
with plastic connections, over a sizable set of simple meta-learning tasks
based on a neuroscience modelling framework. The resulting evolved network can
automatically acquire a novel simple cognitive task, never seen during
training, through the spontaneous operation of its evolved neural organization
and plasticity structure. We suggest that attending to the multiplicity of
loops involved in natural learning may provide useful insight into the
emergence of intelligent behavior.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Evolving Self-Assembling Neural Networks: From Spontaneous Activity to Experience-Dependent Learning [7.479827648985631]
We propose a class of self-organizing neural networks capable of synaptic and structural plasticity in an activity and reward-dependent manner.
Our results demonstrate the ability of the model to learn from experiences in different control tasks starting from randomly connected or empty networks.
arXiv Detail & Related papers (2024-06-14T07:36:21Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Learning the Plasticity: Plasticity-Driven Learning Framework in Spiking
Neural Networks [9.25919593660244]
New paradigm for Spiking Neural Networks (SNNs)
Plasticity-Driven Learning Framework (PDLF)
PDLF redefines concepts of functional and Presynaptic-Dependent Plasticity.
arXiv Detail & Related papers (2023-08-23T11:11:31Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
We argue that the search for Artificial General Intelligence (AGI) should start from a much lower level than human-level intelligence.
Our hypothesis is that learning occurs through sensory feedback when an agent acts in an environment.
We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions.
arXiv Detail & Related papers (2022-07-27T15:30:50Z) - From Biological Synapses to Intelligent Robots [0.0]
Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence.
The potential for adaptive learning and control without supervision is brought forward.
The insights collected here point toward the Hebbian model as a choice solution for intelligent robotics and sensor systems.
arXiv Detail & Related papers (2022-02-25T12:39:22Z) - Towards continual task learning in artificial neural networks: current
approaches and insights from neuroscience [0.0]
The innate capacity of humans and other animals to learn a diverse, and often interfering, range of knowledge is a hallmark of natural intelligence.
The ability of artificial neural networks to learn across a range of tasks and domains is a clear goal of artificial intelligence.
arXiv Detail & Related papers (2021-12-28T13:50:51Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.