論文の概要: Few-Shot Semantic Parsing with Language Models Trained On Code
- arxiv url: http://arxiv.org/abs/2112.08696v1
- Date: Thu, 16 Dec 2021 08:34:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 15:59:04.199523
- Title: Few-Shot Semantic Parsing with Language Models Trained On Code
- Title(参考訳): コードで訓練された言語モデルを用いた意味解析
- Authors: Richard Shin, Benjamin Van Durme
- Abstract要約: Codexは同等のGPT-3モデルよりもセマンティックパーシングが優れていることがわかった。
GPT-3とは異なり、Codexは意味表現を直接ターゲットとする場合、おそらく意味解析で使われる意味表現がコードと似た構造になっているように、同じように機能する。
- 参考スコア(独自算出の注目度): 52.23355024995237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models, prompted with in-context examples, can perform
semantic parsing with little training data. They do better when we formulate
the problem as paraphrasing into canonical utterances, which cast the
underlying meaning representations into a controlled natural language-like
representation. Intuitively, such models can more easily output canonical
utterances as they are closer to the natural language used for pre-training.
More recently, models also pre-trained on code, like OpenAI Codex, have risen
in prominence. Since accurately modeling code requires understanding of
executable semantics. such models may prove more adept at semantic parsing. In
this paper, we test this hypothesis and find that Codex performs better at
semantic parsing than equivalent GPT-3 models. We find that unlike GPT-3, Codex
performs similarly when targeting meaning representations directly, perhaps as
meaning representations used in semantic parsing are structured similar to
code.
- Abstract(参考訳): インコンテキストの例でトリガされた大規模な言語モデルは、トレーニングデータが少なく、セマンティック解析を実行することができる。
標準発話へのパラフレーズ化として問題を定式化することで、基礎となる意味表現を制御された自然言語のような表現にする。
直感的には、そのようなモデルは事前学習に使用される自然言語に近いため、より容易に標準発話を出力することができる。
最近では、openai codexのようなコードで事前トレーニングされたモデルも注目を集めている。
コードの正確なモデリングには実行可能なセマンティクスの理解が必要です。
このようなモデルは意味解析に より適しています
本稿では,この仮説を検証し,等価なGPT-3モデルよりも意味解析が優れていることを示す。
GPT-3とは異なり、Codexは意味表現を直接ターゲットとする場合、おそらく意味解析で使われる意味表現がコードと似た構造になっているように、同じように機能する。
関連論文リスト
- Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - Towards Understanding What Code Language Models Learned [10.989953856458996]
事前訓練された言語モデルは、様々な自然言語処理に有効である。
彼らの能力は、完全に学習する意味や言語を理解する能力に欠けている、と論じられている。
本研究は,表面周波数と共起を超越した,コードのセマンティクスをキャプチャする能力について考察する。
論文 参考訳(メタデータ) (2023-06-20T23:42:14Z) - Zero and Few-shot Semantic Parsing with Ambiguous Inputs [45.285508941560295]
私たちは、曖昧な自然言語を論理やコードといった形式的な表現に変換するためのフレームワーク、データセット、課題であるAmPを紹介します。
我々は,AmPを用いて,複数ショットのテキスト・ツー・コードシステムがあいまいさをどのように処理し,新しいメトリクスを3つ導入するかを検討する。
事前学習された大規模なモデルでは,意図的な指示を伴わずに,可能な意味の分布を把握できないことが判明した。
論文 参考訳(メタデータ) (2023-06-01T15:46:36Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
本稿では,大規模なプロンプトベース言語モデルであるコーデックスの対角的ロバスト性に関する最初の実証的研究について述べる。
この結果から, 最先端の言語モデル(SOTA)は, 慎重に構築された敵の例に対して脆弱であることが示された。
論文 参考訳(メタデータ) (2023-01-30T13:21:00Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z) - Constrained Language Models Yield Few-Shot Semantic Parsers [73.50960967598654]
我々は,事前学習された大規模言語モデルの利用を,少ない意味論として検討する。
意味構文解析の目標は、自然言語入力によって構造化された意味表現を生成することである。
言語モデルを用いて、入力を英語に似た制御されたサブ言語にパラフレーズし、対象の意味表現に自動的にマッピングする。
論文 参考訳(メタデータ) (2021-04-18T08:13:06Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。