論文の概要: Search for temporal cell segmentation robustness in phase-contrast
microscopy videos
- arxiv url: http://arxiv.org/abs/2112.08817v1
- Date: Thu, 16 Dec 2021 12:03:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 14:51:27.640988
- Title: Search for temporal cell segmentation robustness in phase-contrast
microscopy videos
- Title(参考訳): 位相コントラスト顕微鏡ビデオにおける時間的細胞分画ロバストネスの探索
- Authors: Estibaliz G\'omez-de-Mariscal, Hasini Jayatilaka, \"Ozg\"un
\c{C}i\c{c}ek, Thomas Brox, Denis Wirtz, Arrate Mu\~noz-Barrutia
- Abstract要約: 本研究では,3次元コラーゲンマトリックスに埋め込まれた癌細胞を分画する深層学習ワークフローを提案する。
また, 癌細胞形態を研究するための幾何学的特徴付け手法を提案する。
2Dセルのセグメンテーションと追跡のための新しいアノテーション付きデータセットと、実験を再現したり、新しい画像処理問題に適応するためのオープンソース実装を導入する。
- 参考スコア(独自算出の注目度): 31.92922565397439
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Studying cell morphology changes in time is critical to understanding cell
migration mechanisms. In this work, we present a deep learning-based workflow
to segment cancer cells embedded in 3D collagen matrices and imaged with
phase-contrast microscopy. Our approach uses transfer learning and recurrent
convolutional long-short term memory units to exploit the temporal information
from the past and provide a consistent segmentation result. Lastly, we propose
a geometrical-characterization approach to studying cancer cell morphology. Our
approach provides stable results in time, and it is robust to the different
weight initialization or training data sampling. We introduce a new annotated
dataset for 2D cell segmentation and tracking, and an open-source
implementation to replicate the experiments or adapt them to new image
processing problems.
- Abstract(参考訳): 経時的細胞形態変化の研究は、細胞移動機構を理解する上で重要である。
本研究では,3次元コラーゲンマトリックスに埋め込んだ癌細胞を位相コントラスト顕微鏡で観察する深層学習ワークフローを提案する。
提案手法は,過去からの時間情報を活用し,一貫したセグメンテーション結果を提供するために,転送学習と繰り返し畳み込み型長期記憶単位を用いる。
最後に,癌細胞の形態を研究するための幾何学的特徴付け手法を提案する。
我々の手法は時間内に安定した結果をもたらし、異なる重量の初期化やトレーニングデータサンプリングに対して堅牢である。
2次元セルセグメンテーションと追跡のための新しいアノテーション付きデータセットと、実験を再現したり、新しい画像処理問題に適応するためのオープンソース実装を導入する。
関連論文リスト
- Deep Temporal Sequence Classification and Mathematical Modeling for Cell Tracking in Dense 3D Microscopy Videos of Bacterial Biofilms [18.563062576080704]
そこで我々はDenseTrackという新しいセル追跡アルゴリズムを提案する。
DenseTrackは、ディープラーニングと数学的モデルベースの戦略を統合して、連続するフレーム間の対応を確立する。
固有分解に基づく細胞分裂検出戦略を提案する。
論文 参考訳(メタデータ) (2024-06-27T23:26:57Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Learning Deformable 3D Graph Similarity to Track Plant Cells in
Unregistered Time Lapse Images [17.017730437647977]
本研究では,植物細胞を密に充填した3次元細胞構造を利用して3次元グラフを作成し,正確な細胞追跡を行う新しい学習手法を提案する。
提案アルゴリズムの有効性を,ベンチマークデータセット上での精度と推定時間の観点から示す。
論文 参考訳(メタデータ) (2023-09-20T09:04:01Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
本稿では,空間的および時間的注意を並列に効率的に計算するハイブリッドエンコーダデコーダフレームワークを提案する。
また,ミトコンドリアインスタンスの領域を背景から支援する訓練中に,意味的クラッタ・バックグラウンドの逆行性障害も導入した。
論文 参考訳(メタデータ) (2023-03-21T17:58:49Z) - Multi-Modality Microscopy Image Style Transfer for Nuclei Segmentation [3.535158633337794]
本稿では,GAN(Generative Adversarial Network)に基づく顕微鏡的拡張手法を提案する。
他のスタイルの転送方法とは異なり、異なる細胞アッセイタイプや照明条件だけでなく、異なる画像モダリティも扱える。
我々は,様々な細胞アッセイ,照明条件,画像モダリティからなる2018年データサイエンスボウルデータセットを用いて,データ拡張を評価した。
論文 参考訳(メタデータ) (2021-11-23T20:19:20Z) - From augmented microscopy to the topological transformer: a new approach
in cell image analysis for Alzheimer's research [0.0]
細胞画像解析は、細胞機能を抑制するA$beta$タンパク質の存在を検出するために、アルツハイマーの研究において重要である。
Unetは,マルチクラスセマンティックスセグメンテーションの性能を比較することで,拡張顕微鏡に最も適していることがわかった。
我々は,Unetモデルを用いて,光電場画像中の原子核を捕捉する拡張顕微鏡法を開発し,入力画像を位相情報列に変換する。
論文 参考訳(メタデータ) (2021-08-03T16:59:33Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Enforcing Morphological Information in Fully Convolutional Networks to
Improve Cell Instance Segmentation in Fluorescence Microscopy Images [1.408123603417833]
本稿では,よく知られたU-Netアーキテクチャに基づく新しいセルインスタンス分割手法を提案する。
深部距離変換器(DDT)がバックボーンモデルとして機能する。
その結果,従来のU-Netアーキテクチャよりも性能が向上することが示唆された。
論文 参考訳(メタデータ) (2021-06-10T15:54:38Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。