論文の概要: Gendered Language in Resumes and its Implications for Algorithmic Bias
in Hiring
- arxiv url: http://arxiv.org/abs/2112.08910v1
- Date: Thu, 16 Dec 2021 14:26:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 20:25:53.503269
- Title: Gendered Language in Resumes and its Implications for Algorithmic Bias
in Hiring
- Title(参考訳): 雇用におけるジェンダー言語とそのアルゴリズムバイアスへの応用
- Authors: Prasanna Parasurama, Jo\~ao Sedoc
- Abstract要約: 我々は応募者の性別を分類するために一連のモデルを訓練する。
我々は、履歴書から性別を難読化できるかどうか検討する。
難読化後も履歴書には男女情報が多く存在することが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite growing concerns around gender bias in NLP models used in algorithmic
hiring, there is little empirical work studying the extent and nature of
gendered language in resumes. Using a corpus of 709k resumes from IT firms, we
train a series of models to classify the gender of the applicant, thereby
measuring the extent of gendered information encoded in resumes. We also
investigate whether it is possible to obfuscate gender from resumes by removing
gender identifiers, hobbies, gender sub-space in embedding models, etc. We find
that there is a significant amount of gendered information in resumes even
after obfuscation. A simple Tf-Idf model can learn to classify gender with
AUROC=0.75, and more sophisticated transformer-based models achieve AUROC=0.8.
We further find that gender predictive values have low correlation with gender
direction of embeddings -- meaning that, what is predictive of gender is much
more than what is "gendered" in the masculine/feminine sense. We discuss the
algorithmic bias and fairness implications of these findings in the hiring
context.
- Abstract(参考訳): アルゴリズム採用で使用されるNLPモデルでは、性別バイアスに関する懸念が高まりつつあるが、履歴書における性別付き言語の範囲と性質を研究する経験的な研究はほとんどない。
我々は、IT企業の709kの履歴書を用いて、応募者の性別を分類する一連のモデルを訓練し、履歴書にエンコードされた性別情報の量を測定する。
また, ジェンダー識別子, 趣味, ジェンダーサブスペースなどを取り除き, 履歴書からジェンダーを難読化できるかどうかについても検討する。
難読化後も履歴書に有意な性別情報が存在することが判明した。
単純なTf-IdfモデルはAUROC=0.75で性別を分類し、より洗練されたトランスフォーマーベースのモデルはAUROC=0.8を達成する。
さらに、性別の予測値は、埋め込みの性別の方向と相関が低く、つまり、性別の予測は、男性/女性的な意味での「ジェンダー化」よりもずっと大きい。
雇用状況におけるこれらの発見のアルゴリズム的バイアスと公平性の影響について論じる。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - From 'Showgirls' to 'Performers': Fine-tuning with Gender-inclusive Language for Bias Reduction in LLMs [1.1049608786515839]
我々は、ジェンダー・インクリシティを促進するために、大規模言語モデル内の言語構造に適応する。
私たちの作品の焦点は英語の「In'show-Girl'」や「man-cave」のような男女排他的な接尾辞である。
論文 参考訳(メタデータ) (2024-07-05T11:31:30Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - Probing Explicit and Implicit Gender Bias through LLM Conditional Text
Generation [64.79319733514266]
大規模言語モデル(LLM)はバイアスと有害な応答を生成する。
本研究では,あらかじめ定義されたジェンダーフレーズやステレオタイプを必要としない条件付きテキスト生成機構を提案する。
論文 参考訳(メタデータ) (2023-11-01T05:31:46Z) - The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender
Characterisation in 55 Languages [51.2321117760104]
本稿では,55言語を対象とした大規模データセットにおけるジェンダー表現を特徴付ける自動パイプラインであるGender-GAP Pipelineについて述べる。
このパイプラインは、性別付き人称名詞の多言語語彙を用いて、テキスト中の性別表現を定量化する。
本稿では、WMTのトレーニングデータとNewsタスクの開発データにジェンダー表現を報告し、現在のデータが男性表現にスキューされていることを確認する。
論文 参考訳(メタデータ) (2023-08-31T17:20:50Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Professional Presentation and Projected Power: A Case Study of Implicit
Gender Information in English CVs [8.947168670095326]
本稿では,男女のCVにおけるスキルと背景のフレーミングについて検討する。
我々は、米国から1.8Kの正当性、英語、CVのデータセットを導入し、16の職業をカバーした。
論文 参考訳(メタデータ) (2022-11-17T23:26:52Z) - Don't Forget About Pronouns: Removing Gender Bias in Language Models
Without Losing Factual Gender Information [4.391102490444539]
英語のテキストでは、ジェンダー情報とジェンダーバイアスの2つのタイプに焦点を当てている。
ジェンダーシグナルを保存しながら表現のステレオタイプバイアスを小さくすることを目的としている。
論文 参考訳(メタデータ) (2022-06-21T21:38:25Z) - Investigating Gender Bias in BERT [22.066477991442003]
我々は、感情や感情の強さの予測に関連する5つの下流タスクにおいて、それが引き起こすジェンダーバイアスを分析した。
本稿では,各BERT層に対する1つの主方向という,きめ細かい性別方向を求めるアルゴリズムを提案する。
実験により, 下流タスクにおけるBERT誘発バイアスの低減に成功していることがわかった。
論文 参考訳(メタデータ) (2020-09-10T17:38:32Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。