Efficient many-body non-Markovian dynamics of organic polaritons
- URL: http://arxiv.org/abs/2112.09003v3
- Date: Fri, 21 Oct 2022 17:27:10 GMT
- Title: Efficient many-body non-Markovian dynamics of organic polaritons
- Authors: Piper Fowler-Wright and Brendon W. Lovett and Jonathan Keeling
- Abstract summary: We show how to simulate a model of many molecules with strong coupling to many vibrational modes and collective coupling to a single photon mode.
We analyze the steady-state of the model under incoherent pumping to determine the dependence of the polariton lasing threshold on cavity detuning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We show how to simulate a model of many molecules with both strong coupling
to many vibrational modes and collective coupling to a single photon mode. We
do this by combining process tensor matrix product operator methods with a
mean-field approximation which reduces the dimension of the problem. We analyze
the steady-state of the model under incoherent pumping to determine the
dependence of the polariton lasing threshold on cavity detuning, light-matter
coupling strength, and environmental temperature. Moreover, by measuring
two-time correlations, we study quadratic fluctuations about the mean-field to
calculate the photoluminescence spectrum. Our method enables one to simulate
many-body systems with strong coupling to multiple environments, and to extract
both static and dynamical properties.
Related papers
- Correlated emission lasing in a single quantum dot embedded inside a bimodal photonic crystal cavity [0.0]
We investigate the phenomenon of correlated emission lasing in a coherently driven single quantum dot coupled to a bimodal photonic crystal cavity.
To account for exciton-phonon interactions, we incorporate a non-perturbative approach through a polaron transformed master equation.
arXiv Detail & Related papers (2024-11-18T17:15:54Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Mean-field and cumulant approaches to modelling organic polariton physics [0.0]
We develop methods for many-body open quantum systems and apply them to systems of organic polaritons.
The methods employ a mean-field approach to reduce the dimensionality of large-scale problems.
We show how the cumulant expansions may be used to calculate spatially resolved dynamics of organic polaritons.
arXiv Detail & Related papers (2024-05-16T04:54:41Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Modeling of Multimodal Scattering by Conducting Bodies in Quantum
Optics: the Method of Characteristic Modes [0.0]
We give the quantum adaptation of the characteristic mode approach widely used in the classical electrodynamics.
We show how scattering affects quantum-statistical features of the field.
We expect that this method will be useful for designing quantum-optical devices.
arXiv Detail & Related papers (2021-12-17T14:25:59Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.