Mean-field and cumulant approaches to modelling organic polariton physics
- URL: http://arxiv.org/abs/2405.09812v1
- Date: Thu, 16 May 2024 04:54:41 GMT
- Title: Mean-field and cumulant approaches to modelling organic polariton physics
- Authors: Piper Fowler-Wright,
- Abstract summary: We develop methods for many-body open quantum systems and apply them to systems of organic polaritons.
The methods employ a mean-field approach to reduce the dimensionality of large-scale problems.
We show how the cumulant expansions may be used to calculate spatially resolved dynamics of organic polaritons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this thesis we develop methods for many-body open quantum systems and apply them to systems of organic polaritons. The methods employ a mean-field approach to reduce the dimensionality of large-scale problems. Initially assuming the absence of correlations in the many-body state, this approach is built upon in two ways. First, we show how the mean-field approximation can be combined with matrix product operator methods to efficiently simulate the non-Markovian dynamics of a many-body system with strong coupling to multiple environments. We apply this method to calculate the threshold and photoluminescence for a realistic model of an organic laser. Second, we extend the mean-field description by systematically including higher-order correlations via cumulant expansions of the Heisenberg equations of motion. We investigate the validity and convergence properties of these expansions, both with respect to expansion order and system size, for many-body systems with many-to-one network structures. We then show how the cumulant expansions may be used to calculate spatially resolved dynamics of organic polaritons. This enables a study of organic polariton transport in which we observe reversible conversion to dark exciton states and sub-group-velocity propagation. The methods established in this work offer versatile tools for analysing large, many-body open quantum systems and investigating finite-size effects. Their application reveals the intricate dynamics of organic polaritons resulting from the interplay of strong light-matter coupling and vibrational effects.
Related papers
- A Hierarchical Approach to Quantum Many-Body Systems in Structured Environments [0.0]
Cavity quantum materials combine the rich many-body physics of condensed matter systems with strong coupling to the surrounding electromagnetic field.
We show that strong optical coupling modifies the dynamic of the many-body system.
Our work establishes an accessible, yet rigorous, route between condensed matter and quantum optics, fostering the growth of a new domain at their interface.
arXiv Detail & Related papers (2024-05-08T14:43:20Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
We develop a formalism for the robust dynamical decoupling and Hamiltonian engineering of strongly interacting qudit systems.
We experimentally demonstrate these techniques in a strongly-interacting, disordered ensemble of spin-1 nitrogen-vacancy centers.
arXiv Detail & Related papers (2023-05-16T19:12:41Z) - Manipulating growth and propagation of correlations in dipolar
multilayers: From pair production to bosonic Kitaev models [0.0]
We map the many-body spin dynamics to bosonic models.
In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics.
In multi-layer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction.
arXiv Detail & Related papers (2022-11-22T19:00:01Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Manipulating synthetic gauge fluxes via multicolor dressing of
Rydberg-atom arrays [12.153962518450202]
We show that optical Rydberg dressing with multicolor laser fields opens up distinct interaction channels.
A remarkable consequence of the interaction is the emergence of topologically protected long-range doublons.
arXiv Detail & Related papers (2022-03-08T10:47:39Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Efficient many-body non-Markovian dynamics of organic polaritons [0.0]
We show how to simulate a model of many molecules with strong coupling to many vibrational modes and collective coupling to a single photon mode.
We analyze the steady-state of the model under incoherent pumping to determine the dependence of the polariton lasing threshold on cavity detuning.
arXiv Detail & Related papers (2021-12-16T16:36:46Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - Circuit quantum electrodynamics (cQED) with modular quasi-lumped models [0.23624125155742057]
Method partitions a quantum device into compact lumped or quasi-distributed cells.
We experimentally validate the method on large-scale, state-of-the-art superconducting quantum processors.
arXiv Detail & Related papers (2021-03-18T16:03:37Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.