Quantum phase modulation with acoustic cavities and quantum dots
- URL: http://arxiv.org/abs/2112.09267v1
- Date: Fri, 17 Dec 2021 00:48:56 GMT
- Title: Quantum phase modulation with acoustic cavities and quantum dots
- Authors: Poolad Imany, Zixuan Wang, Ryan A. Decrescent, Robert C. Boutelle,
Corey A. Mcdonald, Travis Autry, Samuel Berweger, Pavel Kabos, Sae Woo Nam,
Richard P. Mirin, Kevin L. Silverman
- Abstract summary: A successful approach to bridge the gap between microwave and optical photons has been to use intermediate platforms such as acoustic waves.
Here, we use gigahertz-frequency focusing surface acoustic wave cavities on GaAs.
We demonstrate strong modulation of single photons with a half-wave voltage as low as 44 mV, and subnatural modulation sideband linewidths.
- Score: 1.7039969990048311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fast, efficient, and low power modulation of light at microwave frequencies
is crucial for chip-scale classical and quantum processing as well as for
long-range networks of superconducting quantum processors. A successful
approach to bridge the gap between microwave and optical photons has been to
use intermediate platforms such as acoustic waves, which can couple efficiently
to a variety of quantum systems. Here, we use gigahertz-frequency focusing
surface acoustic wave cavities on GaAs that are piezo-electrically coupled to
superconducting circuits and parametrically coupled, via strain, to photons
scattered from InAs quantum dots . We demonstrate strong modulation of single
photons with a half-wave voltage as low as 44 mV, and subnatural modulation
sideband linewidths. These demonstrations pave the way for efficient and
low-noise transduction of quantum information between microwave and optical
domains.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Terahertz-Mediated Microwave-to-Optical Transduction [0.0]
Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems.
Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption.
We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range.
arXiv Detail & Related papers (2023-07-07T19:31:39Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Low-loss high-impedance circuit for quantum transduction between optical
and microwave photons [0.0]
Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits.
An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer.
We present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz.
arXiv Detail & Related papers (2021-12-09T18:31:13Z) - Large-bandwidth transduction between an optical single quantum-dot
molecule and a superconducting resonator [0.0]
We show that a large electric dipole moment of an exciton in an optically active quantum dot molecule (QDM) efficiently couples to a microwave resonator field at a single-photon level.
Thanks to the fast exciton decay rate in the QDM, the bandwidth between an optical and microwave resonator photon reaches several 100s of MHz.
arXiv Detail & Related papers (2021-10-07T07:28:27Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.