Low-loss high-impedance circuit for quantum transduction between optical
and microwave photons
- URL: http://arxiv.org/abs/2112.05089v1
- Date: Thu, 9 Dec 2021 18:31:13 GMT
- Title: Low-loss high-impedance circuit for quantum transduction between optical
and microwave photons
- Authors: Yuta Tsuchimoto and Martin Kroner
- Abstract summary: Quantum transducers between microwave and optical photons are essential for long-distance quantum networks based on superconducting qubits.
An optically active self-assembled quantum dot molecule (QDM) is an attractive platform for the implementation of a quantum transducer.
We present a design of a QD-high impedance resonator device with a low microwave loss and an expected large single-microwave photon coupling strength of 100s of MHz.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum transducers between microwave and optical photons are essential for
long-distance quantum networks based on superconducting qubits. An optically
active self-assembled quantum dot molecule (QDM) is an attractive platform for
the implementation of a quantum transducer because an exciton in a QDM can be
efficiently coupled to both optical and microwave fields at the single-photon
level. Recently, the transduction between microwave and optical photons has
been demonstrated with a QDM integrated with a superconducting resonator. In
this paper, we present a design of a QD-high impedance resonator device with a
low microwave loss and an expected large single-microwave photon coupling
strength of 100s of MHz. We integrate self-assembled QDs onto a high-impedance
superconducting resonator using a transfer printing technique and demonstrate a
low-microwave loss rate of 1.8 MHz and gate tunability of the QDs. The
microwave loss rate is much lower than the expected QDM-resonator coupling
strength as well as the typical transmon-resonator coupling strength. This
feature will facilitate efficient quantum transduction between an optical and
microwave qubit.
Related papers
- Scalable microwave-to-optical transducers at single photon level with spins [4.142140287566351]
Microwave-to-optical transduction of single photons will play an essential role in interconnecting future superconducting quantum devices.
We implement an on-chip microwave-to-optical transducer using rare-earth ion (REI) doped crystals.
We demonstrate the interference of photons originating from two simultaneously operated transducers, enabled by the inherent absolute frequencies of the atomic transitions.
arXiv Detail & Related papers (2024-07-11T21:43:02Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Quantum phase modulation with acoustic cavities and quantum dots [1.7039969990048311]
A successful approach to bridge the gap between microwave and optical photons has been to use intermediate platforms such as acoustic waves.
Here, we use gigahertz-frequency focusing surface acoustic wave cavities on GaAs.
We demonstrate strong modulation of single photons with a half-wave voltage as low as 44 mV, and subnatural modulation sideband linewidths.
arXiv Detail & Related papers (2021-12-17T00:48:56Z) - Large-bandwidth transduction between an optical single quantum-dot
molecule and a superconducting resonator [0.0]
We show that a large electric dipole moment of an exciton in an optically active quantum dot molecule (QDM) efficiently couples to a microwave resonator field at a single-photon level.
Thanks to the fast exciton decay rate in the QDM, the bandwidth between an optical and microwave resonator photon reaches several 100s of MHz.
arXiv Detail & Related papers (2021-10-07T07:28:27Z) - Converting microwave and telecom photons with a silicon photonic
nanomechanical interface [0.0]
We demonstrate a fully integrated, coherent transducer connecting the microwave X and the telecom S bands.
The device is fabricated from CMOS compatible materials and achieves a V$_pi$ as low as 16 $mu$V for sub-watt pump powers.
Such power-efficient, ultra-sensitive and highly integrated hybrid interconnects might find applications ranging from quantum communication and RF receivers to magnetic resonance imaging.
arXiv Detail & Related papers (2020-02-26T17:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.