Improving neural implicit surfaces geometry with patch warping
- URL: http://arxiv.org/abs/2112.09648v1
- Date: Fri, 17 Dec 2021 17:43:50 GMT
- Title: Improving neural implicit surfaces geometry with patch warping
- Authors: Fran\c{c}ois Darmon, B\'en\'edicte Bascle, Jean-Cl\'ement Devaux,
Pascal Monasse, Mathieu Aubry
- Abstract summary: We argue that this comes from the difficulty to learn and render high frequency textures with neural networks.
We propose to add to the standard neural rendering optimization a direct photo-consistency term across the different views.
We evaluate our approach, dubbed NeuralWarp, on the standard DTU and EPFL benchmarks and show it outperforms state of the art unsupervised implicit surfaces reconstructions by over 20% on both datasets.
- Score: 12.106051690920266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural implicit surfaces have become an important technique for multi-view 3D
reconstruction but their accuracy remains limited. In this paper, we argue that
this comes from the difficulty to learn and render high frequency textures with
neural networks. We thus propose to add to the standard neural rendering
optimization a direct photo-consistency term across the different views.
Intuitively, we optimize the implicit geometry so that it warps views on each
other in a consistent way. We demonstrate that two elements are key to the
success of such an approach: (i) warping entire patches, using the predicted
occupancy and normals of the 3D points along each ray, and measuring their
similarity with a robust structural similarity (SSIM); (ii) handling visibility
and occlusion in such a way that incorrect warps are not given too much
importance while encouraging a reconstruction as complete as possible. We
evaluate our approach, dubbed NeuralWarp, on the standard DTU and EPFL
benchmarks and show it outperforms state of the art unsupervised implicit
surfaces reconstructions by over 20% on both datasets.
Related papers
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - Learning Robust Generalizable Radiance Field with Visibility and Feature
Augmented Point Representation [7.203073346844801]
This paper introduces a novel paradigm for the generalizable neural radiance field (NeRF)
We propose the first paradigm that constructs the generalizable neural field based on point-based rather than image-based rendering.
Our approach explicitly models visibilities by geometric priors and augments them with neural features.
arXiv Detail & Related papers (2024-01-25T17:58:51Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
We propose a two-stage training process, decouple view-dependent and view-independent colors, and leverage two novel consistency constraints to enhance detail reconstruction performance without requiring extra priors.
Experiments on synthetic and real-world datasets show the capability of reducing the interference from prior estimation errors.
arXiv Detail & Related papers (2023-09-18T13:05:23Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-05T07:02:53Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
We propose a novel framework to exploit 3D dense (depth and surface normals) information for expression manipulation.
We use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset.
Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.
arXiv Detail & Related papers (2020-09-30T17:12:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.