Improving Multi-Domain Generalization through Domain Re-labeling
- URL: http://arxiv.org/abs/2112.09802v1
- Date: Fri, 17 Dec 2021 23:21:50 GMT
- Title: Improving Multi-Domain Generalization through Domain Re-labeling
- Authors: Kowshik Thopalli, Sameeksha Katoch, Andreas Spanias, Pavan Turaga and
Jayaraman J. Thiagarajan
- Abstract summary: We study the important link between pre-specified domain labels and the generalization performance.
We introduce a general approach for multi-domain generalization, MulDEns, that uses an ERM-based deep ensembling backbone.
We show that MulDEns does not require tailoring the augmentation strategy or the training process specific to a dataset.
- Score: 31.636953426159224
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Domain generalization (DG) methods aim to develop models that generalize to
settings where the test distribution is different from the training data. In
this paper, we focus on the challenging problem of multi-source zero-shot DG,
where labeled training data from multiple source domains is available but with
no access to data from the target domain. Though this problem has become an
important topic of research, surprisingly, the simple solution of pooling all
source data together and training a single classifier is highly competitive on
standard benchmarks. More importantly, even sophisticated approaches that
explicitly optimize for invariance across different domains do not necessarily
provide non-trivial gains over ERM. In this paper, for the first time, we study
the important link between pre-specified domain labels and the generalization
performance. Using a motivating case-study and a new variant of a
distributional robust optimization algorithm, GroupDRO++, we first demonstrate
how inferring custom domain groups can lead to consistent improvements over the
original domain labels that come with the dataset. Subsequently, we introduce a
general approach for multi-domain generalization, MulDEns, that uses an
ERM-based deep ensembling backbone and performs implicit domain re-labeling
through a meta-optimization algorithm. Using empirical studies on multiple
standard benchmarks, we show that MulDEns does not require tailoring the
augmentation strategy or the training process specific to a dataset,
consistently outperforms ERM by significant margins, and produces
state-of-the-art generalization performance, even when compared to existing
methods that exploit the domain labels.
Related papers
- On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
Domain Generalization aims to learn models whose performance remains high on unseen domains encountered at test-time.
It is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets.
We propose a universal certification framework that can efficiently certify the worst-case performance of any DG method.
arXiv Detail & Related papers (2022-06-24T16:29:43Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - Adaptive Methods for Aggregated Domain Generalization [26.215904177457997]
In many settings, privacy concerns prohibit obtaining domain labels for the training data samples.
We propose a domain-adaptive approach to this problem, which operates in two steps.
Our approach achieves state-of-the-art performance on a variety of domain generalization benchmarks without using domain labels.
arXiv Detail & Related papers (2021-12-09T08:57:01Z) - Reappraising Domain Generalization in Neural Networks [8.06370138649329]
Domain generalization (DG) of machine learning algorithms is defined as their ability to learn a domain agnostic hypothesis from multiple training distributions.
We find that a straightforward Empirical Risk Minimization (ERM) baseline consistently outperforms existing DG methods.
We propose a classwise-DG formulation, where for each class, we randomly select one of the domains and keep it aside for testing.
arXiv Detail & Related papers (2021-10-15T10:06:40Z) - Generalizable Person Re-identification with Relevance-aware Mixture of
Experts [45.13716166680772]
We propose a novel method called the relevance-aware mixture of experts (RaMoE)
RaMoE uses an effective voting-based mixture mechanism to dynamically leverage source domains' diverse characteristics to improve the model's generalization.
Considering the target domains' invisibility during training, we propose a novel learning-to-learn algorithm combined with our relation alignment loss to update the voting network.
arXiv Detail & Related papers (2021-05-19T14:19:34Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.