META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification
- URL: http://arxiv.org/abs/2112.08684v1
- Date: Thu, 16 Dec 2021 08:06:50 GMT
- Title: META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification
- Authors: Boqiang Xu, Jian Liang, Lingxiao He, Zhenan Sun
- Abstract summary: Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
- Score: 68.39849081353704
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain generalizable (DG) person re-identification (ReID) aims to test across
unseen domains without access to the target domain data at training time, which
is a realistic but challenging problem. In contrast to methods assuming an
identical model for different domains, Mixture of Experts (MoE) exploits
multiple domain-specific networks for leveraging complementary information
between domains, obtaining impressive results. However, prior MoE-based DG ReID
methods suffer from a large model size with the increase of the number of
source domains, and most of them overlook the exploitation of domain-invariant
characteristics. To handle the two issues above, this paper presents a new
approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
To avoid the large model size, experts in META do not add a branch network for
each source domain but share all the parameters except for the batch
normalization layers. Besides multiple experts, META leverages Instance
Normalization (IN) and introduces it into a global branch to pursue invariant
features across domains. Meanwhile, META considers the relevance of an unseen
target sample and source domains via normalization statistics and develops an
aggregation network to adaptively integrate multiple experts for mimicking
unseen target domain. Benefiting from a proposed consistency loss and an
episodic training algorithm, we can expect META to mimic embedding for a truly
unseen target domain. Extensive experiments verify that META surpasses
state-of-the-art DG ReID methods by a large margin.
Related papers
- Domain generalization Person Re-identification on Attention-aware
multi-operation strategery [8.90472129039969]
Domain generalization person re-identification (DG Re-ID) aims to directly deploy a model trained on the source domain to the unseen target domain with good generalization.
In the existing DG Re-ID methods, invariant operations are effective in extracting domain generalization features.
An Attention-aware Multi-operation Strategery (AMS) for DG Re-ID is proposed to extract more generalized features.
arXiv Detail & Related papers (2022-10-19T09:18:46Z) - Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from
Mixture-of-Experts [33.21435044949033]
Most existing methods perform training on multiple source domains using a single model.
We propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process.
arXiv Detail & Related papers (2022-10-08T02:28:10Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Adaptive Mixture of Experts Learning for Generalizable Face
Anti-Spoofing [37.75738807247752]
Face anti-spoofing approaches based on domain generalization (DG) have drawn growing attention.
Existing DG-based FAS approaches always capture the domain-invariant features for generalizing on the various unseen domains.
We propose an Adaptive Mixture of Experts Learning framework, which exploits the domain-specific information to adaptively establish the link among the seen source domains and unseen target domains.
arXiv Detail & Related papers (2022-07-20T13:02:51Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Generalizable Person Re-identification with Relevance-aware Mixture of
Experts [45.13716166680772]
We propose a novel method called the relevance-aware mixture of experts (RaMoE)
RaMoE uses an effective voting-based mixture mechanism to dynamically leverage source domains' diverse characteristics to improve the model's generalization.
Considering the target domains' invisibility during training, we propose a novel learning-to-learn algorithm combined with our relation alignment loss to update the voting network.
arXiv Detail & Related papers (2021-05-19T14:19:34Z) - Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification [81.30327016286009]
We propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
arXiv Detail & Related papers (2021-05-07T02:54:55Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios.
We propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
arXiv Detail & Related papers (2021-05-06T06:04:59Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.