Quantum steering and quantum discord under noisy channels and
entanglement swapping
- URL: http://arxiv.org/abs/2112.10027v1
- Date: Sat, 18 Dec 2021 23:52:13 GMT
- Title: Quantum steering and quantum discord under noisy channels and
entanglement swapping
- Authors: Pedro Rosario, Andr\'es F. Ducuara, Cristian E. Susa
- Abstract summary: Quantum entanglement, discord, and EPR-steering are valuable resources for fuelling quantum information-theoretic protocols.
EPR-steering is more general than Bell-nonlocality and yet more restrictive than entanglement.
Quantum discord on the other hand, captures non-classical behaviour beyond that of entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum entanglement, discord, and EPR-steering are properties which are
considered as valuable resources for fuelling quantum information-theoretic
protocols. EPR-steering is a property that is more general than
Bell-nonlocality and yet more restrictive than entanglement. Quantum discord on
the other hand, captures non-classical behaviour beyond that of entanglement,
and its study has remained of active research interest during the past two
decades. Exploring the behaviour of these quantum properties in different
physical scenarios, like those simulated by open quantum systems, is therefore
of crucial importance for understanding their viability for quantum
technologies. In this work, we analyse the behaviour of EPR-steering,
entanglement, and quantum discord, for two-qubit states under various quantum
processes. First, we consider the three noisy channel scenarios of; phase
damping, generalised amplitude damping and stochastic dephasing channel.
Second, we explore the behaviour of these quantum properties in an entanglement
swapping scenario. We quantify EPR-steering by means of an inequality with
three-input two-output measurement settings, and address quantum discord as the
interferometric power of quantum states. Our findings are the following. First,
we show that some of the relatively straightforward noisy channels here
considered, can induce non-trivial dynamics such as sudden death as well as
death and revival of EPR-steering and entanglement. Second, we find that
although noisy channels in general reduce the amount of correlations present in
the system, the swapping protocol on the other hand displays scenarios where
these quantum correlations can be enhanced. These results therefore illustrate
that quantum processes do not exclusively affect the quantum properties of
physical systems in a negative manner, but that they can also have positive
effects on such properties.
Related papers
- Channel nonlocality under decoherence [0.0]
We quantify nonlocality of bipartite quantum channels and identify its component resisting the effects of dephasing noise.
We show that simulating certain processes with quantum channels undergoing decoherence has a communication advantage with respect to their classical simulation.
arXiv Detail & Related papers (2024-08-19T18:00:05Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Flow of quantum correlations in noisy two-mode squeezed microwave states [0.0]
We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise.
We focus on two different types of correlations, namely, quantum entanglement and quantum discord.
arXiv Detail & Related papers (2022-07-13T09:59:52Z) - Noise effects on purity and quantum entanglement in terms of physical
implementability [27.426057220671336]
Quantum decoherence due to imperfect manipulation of quantum devices is a key issue in the noisy intermediate-scale quantum (NISQ) era.
Standard analyses in quantum information and quantum computation use error rates to parameterize quantum noise channels.
We propose to characterize the decoherence effect of a noise channel by the physical implementability of its inverse.
arXiv Detail & Related papers (2022-07-04T13:35:17Z) - Steering-enhanced quantum metrology using superpositions of quantum
channels [0.0]
We consider a control system that manipulates the target to pass through superpositions of either dephased or depolarized phase shifts.
We implement proof-of-principle experiments for a superposition of the dephased phase shifts on a IBM Quantum computer.
arXiv Detail & Related papers (2022-06-08T09:15:06Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.