Channel nonlocality under decoherence
- URL: http://arxiv.org/abs/2408.10317v1
- Date: Mon, 19 Aug 2024 18:00:05 GMT
- Title: Channel nonlocality under decoherence
- Authors: Albert Rico, Moisés Bermejo Morán, Fereshte Shahbeigi, Karol Życzkowski,
- Abstract summary: We quantify nonlocality of bipartite quantum channels and identify its component resisting the effects of dephasing noise.
We show that simulating certain processes with quantum channels undergoing decoherence has a communication advantage with respect to their classical simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of realistic quantum devices requires a solid understanding of the nonlocal resources present in quantum channels, and the effects of decoherence on them. Here we quantify nonlocality of bipartite quantum channels and identify its component resisting the effects of dephasing noise. Despite its classical nature, we demonstrate that the latter plays a relevant role in performing quantum protocols, such as state transformations and quantum coding for noisy communication. In the converse direction, we show that simulating certain stochastic processes with quantum channels undergoing decoherence has a communication advantage with respect to their classical simulation.
Related papers
- Coherent Information Phase Transition in a Noisy Quantum Circuit [3.134848671499466]
We introduce quantum-enhanced operations into a noisy monitored quantum circuit.
This transition is modulated by the relative frequency of noise and quantum-enhanced operations.
We propose a resource-efficient protocol to characterize this phase transition.
arXiv Detail & Related papers (2024-08-29T05:09:35Z) - Bidirectional classical communication cost of a bipartite quantum channel assisted by non-signalling correlations [6.1108095842541]
This paper investigates the bidirectional classical communication cost of simulating a bipartite quantum channel assisted by non-signalling correlations.
We derive semidefinite programming (SDP) formulations for the one-shot exact bidirectional classical communication cost via non-signalling bipartite superchannels.
Our results elucidate the role of non-locality in quantum communication and pave the way for exploring quantum reverse Shannon theory in bipartite scenarios.
arXiv Detail & Related papers (2024-08-05T14:30:50Z) - Learning Distributed Quantum State Discrimination with Noisy Classical
Communications [39.000858564696856]
This paper presents Noise Aware-LOCCNet (NA-LOCCNet) for distributed quantum state discrimination in the presence of noisy communication.
We propose specific ansatzes for the case of two observed qubit pairs, and we describe a noise-aware training design criterion.
arXiv Detail & Related papers (2022-07-22T22:06:56Z) - Noise effects on purity and quantum entanglement in terms of physical
implementability [27.426057220671336]
Quantum decoherence due to imperfect manipulation of quantum devices is a key issue in the noisy intermediate-scale quantum (NISQ) era.
Standard analyses in quantum information and quantum computation use error rates to parameterize quantum noise channels.
We propose to characterize the decoherence effect of a noise channel by the physical implementability of its inverse.
arXiv Detail & Related papers (2022-07-04T13:35:17Z) - Faithfulness and sensitivity for ancilla-assisted process tomography [0.0]
A system-ancilla bipartite state capable of containing the complete information of an unknown quantum channel acting on the system is called faithful.
We complete the proof of the equivalence and introduce the generalization of faithfulness to various classes of quantum channels.
arXiv Detail & Related papers (2022-06-13T04:19:22Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Quantum steering and quantum discord under noisy channels and
entanglement swapping [0.0]
Quantum entanglement, discord, and EPR-steering are valuable resources for fuelling quantum information-theoretic protocols.
EPR-steering is more general than Bell-nonlocality and yet more restrictive than entanglement.
Quantum discord on the other hand, captures non-classical behaviour beyond that of entanglement.
arXiv Detail & Related papers (2021-12-18T23:52:13Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.