Wiener Guided DIP for Unsupervised Blind Image Deconvolution
- URL: http://arxiv.org/abs/2112.10271v1
- Date: Sun, 19 Dec 2021 22:19:13 GMT
- Title: Wiener Guided DIP for Unsupervised Blind Image Deconvolution
- Authors: Gustav Bredell, Ertunc Erdil, Bruno Weber, Ender Konukoglu
- Abstract summary: Blind deconvolution is an ill-posed problem arising in various fields ranging from microscopy to astronomy.
Deep learning architectures can serve as an image generation prior during unsupervised blind deconvolution optimization.
We propose to use Wiener-deconvolution to guide the image generator during optimization by providing it a sharpened version of the blurry image.
- Score: 10.440495513371747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind deconvolution is an ill-posed problem arising in various fields ranging
from microscopy to astronomy. The ill-posed nature of the problem requires
adequate priors to arrive to a desirable solution. Recently, it has been shown
that deep learning architectures can serve as an image generation prior during
unsupervised blind deconvolution optimization, however often exhibiting a
performance fluctuation even on a single image. We propose to use
Wiener-deconvolution to guide the image generator during optimization by
providing it a sharpened version of the blurry image using an auxiliary kernel
estimate starting from a Gaussian. We observe that the high-frequency artifacts
of deconvolution are reproduced with a delay compared to low-frequency
features. In addition, the image generator reproduces low-frequency features of
the deconvolved image faster than that of a blurry image. We embed the
computational process in a constrained optimization framework and show that the
proposed method yields higher stability and performance across multiple
datasets. In addition, we provide the code.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
We propose Image-GS, a content-adaptive image representation.
Using anisotropic 2D Gaussians as the basis, Image-GS shows high memory efficiency, supports fast random access, and offers a natural level of detail stack.
General efficiency and fidelity of Image-GS are validated against several recent neural image representations and industry-standard texture compressors.
We hope this research offers insights for developing new applications that require adaptive quality and resource control, such as machine perception, asset streaming, and content generation.
arXiv Detail & Related papers (2024-07-02T00:45:21Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - Self-Supervised Single-Image Deconvolution with Siamese Neural Networks [6.138671548064356]
Inverse problems in image reconstruction are fundamentally complicated by unknown noise properties.
Deep learning methods allow for flexible parametrization of the noise and learning its properties directly from the data.
We tackle this problem with Fast Fourier Transform convolutions that provide training speed-up in 3D deconvolution tasks.
arXiv Detail & Related papers (2023-08-18T09:51:11Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - An Energy-Efficient Edge Computing Paradigm for Convolution-based Image
Upsampling [0.0]
A novel energy-efficient edge computing paradigm is proposed for real-time deep learning-based image upsampling applications.
We transform learned convolution kernels to deconvolution kernels before deploying them for inference as a functionally equivalent deconvolution.
arXiv Detail & Related papers (2021-07-15T23:49:37Z) - On Measuring and Controlling the Spectral Bias of the Deep Image Prior [63.88575598930554]
The deep image prior has demonstrated the remarkable ability that untrained networks can address inverse imaging problems.
It requires an oracle to determine when to stop the optimization as the performance degrades after reaching a peak.
We study the deep image prior from a spectral bias perspective to address these problems.
arXiv Detail & Related papers (2021-07-02T15:10:42Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - u-net CNN based fourier ptychography [5.46367622374939]
We propose a new retrieval algorithm that is based on convolutional neural networks.
Experiments demonstrate that our model achieves better reconstruction results and is more robust under system aberrations.
arXiv Detail & Related papers (2020-03-16T22:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.