Self-Supervised Single-Image Deconvolution with Siamese Neural Networks
- URL: http://arxiv.org/abs/2308.09426v1
- Date: Fri, 18 Aug 2023 09:51:11 GMT
- Title: Self-Supervised Single-Image Deconvolution with Siamese Neural Networks
- Authors: Mikhail Papkov, Kaupo Palo, Leopold Parts
- Abstract summary: Inverse problems in image reconstruction are fundamentally complicated by unknown noise properties.
Deep learning methods allow for flexible parametrization of the noise and learning its properties directly from the data.
We tackle this problem with Fast Fourier Transform convolutions that provide training speed-up in 3D deconvolution tasks.
- Score: 6.138671548064356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse problems in image reconstruction are fundamentally complicated by
unknown noise properties. Classical iterative deconvolution approaches amplify
noise and require careful parameter selection for an optimal trade-off between
sharpness and grain. Deep learning methods allow for flexible parametrization
of the noise and learning its properties directly from the data. Recently,
self-supervised blind-spot neural networks were successfully adopted for image
deconvolution by including a known point-spread function in the end-to-end
training. However, their practical application has been limited to 2D images in
the biomedical domain because it implies large kernels that are poorly
optimized. We tackle this problem with Fast Fourier Transform convolutions that
provide training speed-up in 3D microscopy deconvolution tasks. Further, we
propose to adopt a Siamese invariance loss for deconvolution and empirically
identify its optimal position in the neural network between blind-spot and full
image branches. The experimental results show that our improved framework
outperforms the previous state-of-the-art deconvolution methods with a known
point spread function.
Related papers
- Leveraging Classic Deconvolution and Feature Extraction in Zero-Shot
Image Restoration [0.4398130586098371]
Non-blind deconvolution aims to restore a sharp image from its blurred counterpart given an obtained kernel.
We propose a novel non-blind deconvolution method that leverages the power of deep learning and classic iterative deconvolution algorithms.
Our method demonstrates significant improvements in various real-world applications non-blind deconvolution tasks.
arXiv Detail & Related papers (2023-10-03T14:41:30Z) - Ambiguity in solving imaging inverse problems with deep learning based
operators [0.0]
Large convolutional neural networks have been widely used as tools for image deblurring.
Image deblurring is mathematically modeled as an ill-posed inverse problem and its solution is difficult to approximate when noise affects the data.
In this paper, we propose some strategies to improve stability without losing to much accuracy to deblur images with deep-learning based methods.
arXiv Detail & Related papers (2023-05-31T12:07:08Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application.
We build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details.
arXiv Detail & Related papers (2022-09-30T11:15:03Z) - Wiener Guided DIP for Unsupervised Blind Image Deconvolution [10.440495513371747]
Blind deconvolution is an ill-posed problem arising in various fields ranging from microscopy to astronomy.
Deep learning architectures can serve as an image generation prior during unsupervised blind deconvolution optimization.
We propose to use Wiener-deconvolution to guide the image generator during optimization by providing it a sharpened version of the blurry image.
arXiv Detail & Related papers (2021-12-19T22:19:13Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - OSLO: On-the-Sphere Learning for Omnidirectional images and its
application to 360-degree image compression [59.58879331876508]
We study the learning of representation models for omnidirectional images and propose to use the properties of HEALPix uniform sampling of the sphere to redefine the mathematical tools used in deep learning models for omnidirectional images.
Our proposed on-the-sphere solution leads to a better compression gain that can save 13.7% of the bit rate compared to similar learned models applied to equirectangular images.
arXiv Detail & Related papers (2021-07-19T22:14:30Z) - DWDN: Deep Wiener Deconvolution Network for Non-Blind Image Deblurring [66.91879314310842]
We propose an explicit deconvolution process in a feature space by integrating a classical Wiener deconvolution framework with learned deep features.
A multi-scale cascaded feature refinement module then predicts the deblurred image from the deconvolved deep features.
We show that the proposed deep Wiener deconvolution network facilitates deblurred results with visibly fewer artifacts and quantitatively outperforms state-of-the-art non-blind image deblurring methods by a wide margin.
arXiv Detail & Related papers (2021-03-18T00:38:11Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.