Quantum phases of dipolar bosons in one-dimensional optical lattices
- URL: http://arxiv.org/abs/2112.10386v3
- Date: Sun, 17 Jul 2022 14:17:33 GMT
- Title: Quantum phases of dipolar bosons in one-dimensional optical lattices
- Authors: Rebecca Kraus, Titas Chanda, Jakub Zakrzewski, Giovanna Morigi
- Abstract summary: We theoretically analyze the phase diagram of a quantum gas of bosons that interact via repulsive dipolar interactions.
Our results predict that correlated tunneling can significantly modify the parameter range of the topological insulator phase.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We theoretically analyze the phase diagram of a quantum gas of bosons that
interact via repulsive dipolar interactions. The bosons are tightly confined by
an optical lattice in a quasi one-dimensional geometry. In the single-band
approximation, their dynamics is described by an extended Bose-Hubbard model
where the relevant contributions of the dipolar interactions consist of
density-density repulsion and correlated tunneling terms. We evaluate the phase
diagram for unit density using numerical techniques based on the density-matrix
renormalization group algorithm. Our results predict that correlated tunneling
can significantly modify the parameter range of the topological insulator
phase. At vanishing values of the onsite interactions, moreover, correlated
tunneling promotes the onset of a phase with a large number of low energy
metastable configurations.
Related papers
- Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Bond order via cavity-mediated interactions [0.0]
We numerically study the phase diagram of bosons tightly trapped in the lowest band of an optical lattice and dispersively coupled to a single-mode cavity field.
arXiv Detail & Related papers (2022-01-14T14:06:59Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Staggered superfluid phases of dipolar bosons in two-dimensional square
lattices [0.0]
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice.
The bosons interact via the repulsive dipolar interactions and s-wave scattering.
We show that this interference gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy.
arXiv Detail & Related papers (2020-08-03T13:39:52Z) - Quantum phase transition of the Bose-Hubbard model on cubic lattice with
anisotropic hopping [7.3711210986071425]
In quantum many-body system, dimensionality plays a critical role on type of the quantum phase transition.
We studied the Bose-Hubbard model on cubic lattice with anisotropic hopping.
arXiv Detail & Related papers (2020-02-25T00:16:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.