Practical Quantum State Tomography for Gibbs states
- URL: http://arxiv.org/abs/2112.10418v2
- Date: Mon, 30 Jan 2023 22:18:28 GMT
- Title: Practical Quantum State Tomography for Gibbs states
- Authors: Yotam Y. Lifshitz, Eyal Bairey, Eli Arbel, Gadi Aleksandrowicz, Haggai
Landa, Itai Arad
- Abstract summary: We develop a tomography approach that requires moderate computational and quantum resources for the tomography of states that can be approximated by Gibbs states of local Hamiltonians.
We demonstrate the utility of this method with a high fidelity reconstruction of the density matrix of 4 to 10 qubits in a Gibbs state of the transverse-field Ising model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography is an essential tool for the characterization and
verification of quantum states. However, as it cannot be directly applied to
systems with more than a few qubits, efficient tomography of larger states on
mid-sized quantum devices remains an important challenge in quantum computing.
We develop a tomography approach that requires moderate computational and
quantum resources for the tomography of states that can be approximated by
Gibbs states of local Hamiltonians. The proposed method, Hamiltonian Learning
Tomography, uses a Hamiltonian learning algorithm to get a parametrized ansatz
for the Gibbs Hamiltonian, and optimizes it with respect to the results of
local measurements. We demonstrate the utility of this method with a high
fidelity reconstruction of the density matrix of 4 to 10 qubits in a Gibbs
state of the transverse-field Ising model, in numerical simulations as well as
in experiments on IBM Quantum superconducting devices accessed via the cloud.
Code implementation of the our method is freely available as an open source
software in Python.
Related papers
- Learning topological states from randomized measurements using variational tensor network tomography [0.4818215922729967]
Learning faithful representations of quantum states is crucial to fully characterizing the variety of many-body states created on quantum processors.
We implement and study a tomographic method that combines variational optimization on tensor networks with randomized measurement techniques.
We demonstrate its ability to learn the ground state of the surface code Hamiltonian as well as an experimentally realizable quantum spin liquid state.
arXiv Detail & Related papers (2024-05-31T21:05:43Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantum State Tomography with Locally Purified Density Operators and Local Measurements [17.38734393793605]
An efficient representation of quantum states enables realizing quantum state tomography with minimal measurements.
We propose an alternative approach to state tomography that uses tensor network representations of mixed states through locally purified density operators.
Our study opens avenues in quantum state tomography for two-dimensional systems using tensor network formalism.
arXiv Detail & Related papers (2023-07-31T03:14:31Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum state tomography with tensor train cross approximation [84.59270977313619]
We show that full quantum state tomography can be performed for such a state with a minimal number of measurement settings.
Our method requires exponentially fewer state copies than the best known tomography method for unstructured states and local measurements.
arXiv Detail & Related papers (2022-07-13T17:56:28Z) - Adaptive variational algorithms for quantum Gibbs state preparation [0.0]
We introduce an objective function that, unlike the free energy, is easily measured, and (ii) using dynamically generated, problem-tailored ans"atze.
This allows for arbitrarily accurate Gibbs state preparation using low-depth circuits.
We numerically demonstrate that our algorithm can prepare high-fidelity Gibbs states across a broad range of temperatures and for a variety of Hamiltonians.
arXiv Detail & Related papers (2022-03-23T22:54:19Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
We present an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy.
The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory.
Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography.
arXiv Detail & Related papers (2020-09-17T11:28:41Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
Current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices.
Quantum tomography tries to reconstruct a quantum system's density matrix by a complete set of observables.
We propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables.
arXiv Detail & Related papers (2020-09-02T04:39:45Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
We introduce a quantum state tomography platform based on the framework of reservoir computing.
It forms a quantum neural network, and operates as a comprehensive device for reconstructing an arbitrary quantum state.
arXiv Detail & Related papers (2020-08-14T14:01:55Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.