Minimal Quantum Reservoirs with Hamiltonian Encoding
- URL: http://arxiv.org/abs/2505.22575v1
- Date: Wed, 28 May 2025 16:50:05 GMT
- Title: Minimal Quantum Reservoirs with Hamiltonian Encoding
- Authors: Gerard McCaul, Juan Sebastian Totero Gongora, Wendy Otieno, Sergey Savelev, Alexandre Zagoskin, Alexander G. Balanov,
- Abstract summary: We investigate a minimal architecture for quantum reservoir computing based on Hamiltonian encoding.<n>This approach circumvents many of the experimental overheads typically associated with quantum machine learning.
- Score: 72.27323884094953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate a minimal architecture for quantum reservoir computing based on Hamiltonian encoding, in which input data is injected via modulation of system parameters rather than state preparation. This approach circumvents many of the experimental overheads typically associated with quantum machine learning, enabling computation without feedback, memory, or state tomography. We demonstrate that such a minimal quantum reservoir, despite lacking intrinsic memory, can perform nonlinear regression and prediction tasks when augmented with post-processing delay embeddings. Our results provide a conceptually and practically streamlined framework for quantum information processing, offering a clear baseline for future implementations on near-term quantum hardware.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.<n>We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.<n>We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Feedback-enhanced quantum reservoir computing with weak measurements [1.474723404975345]
We develop a feedback-enhanced quantum reservoir computing framework.<n>We show that our model outperforms conventional QRC approaches in many cases.<n>These findings highlight the potential of feedback-enhanced QRC for next-generation quantum machine learning applications.
arXiv Detail & Related papers (2025-03-23T04:47:06Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Optimizing quantum noise-induced reservoir computing for nonlinear and
chaotic time series prediction [2.5427629797261297]
We make advancements to the quantum noise-induced reservoir, in which reservoir noise is used as a resource to generate expressive, nonlinear signals.
We show that with only a single noise model and small memory capacities, excellent simulation results were obtained on nonlinear benchmarks.
arXiv Detail & Related papers (2023-03-09T18:40:03Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Physical reservoir computing using finitely-sampled quantum systems [0.0]
Reservoir computing exploits the nonlinear dynamics of a physical reservoir to perform complex time-series processing tasks.
Here we describe a framework for reservoir computing with nonlinear quantum reservoirs under continuous measurement.
arXiv Detail & Related papers (2021-10-26T16:46:14Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Temporal Information Processing on Noisy Quantum Computers [3.4180402210147243]
We propose quantum reservoir computing that harnesses complex dissipative quantum dynamics.
Proof-of-principle experiments on remotely accessed cloud-based superconducting quantum computers demonstrate that small and noisy quantum reservoirs can tackle high-order nonlinear temporal tasks.
Our results pave the path for attractive temporal processing applications of near-term gate-model quantum computers of increasing fidelity but without quantum error correction.
arXiv Detail & Related papers (2020-01-26T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.