論文の概要: Certified Federated Adversarial Training
- arxiv url: http://arxiv.org/abs/2112.10525v1
- Date: Mon, 20 Dec 2021 13:40:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 22:26:48.332918
- Title: Certified Federated Adversarial Training
- Title(参考訳): 認証フェデレーション・ディベクショナル・トレーニング
- Authors: Giulio Zizzo, Ambrish Rawat, Mathieu Sinn, Sergio Maffeis, Chris
Hankin
- Abstract要約: 我々は、労働者のクォーラムが完全に悪意のある場合、FLシステムに敵の訓練を施すシナリオに取り組む。
我々は、モデルに毒を盛ったアタッカーをモデル化し、そのモデルが明らかに敵の堅牢性を示すように、敵の訓練に弱点を挿入する。
この防御は、アダプティブアタックに対してさえも、敵の堅牢性を維持することができることを示す。
- 参考スコア(独自算出の注目度): 3.474871319204387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In federated learning (FL), robust aggregation schemes have been developed to
protect against malicious clients. Many robust aggregation schemes rely on
certain numbers of benign clients being present in a quorum of workers. This
can be hard to guarantee when clients can join at will, or join based on
factors such as idle system status, and connected to power and WiFi. We tackle
the scenario of securing FL systems conducting adversarial training when a
quorum of workers could be completely malicious. We model an attacker who
poisons the model to insert a weakness into the adversarial training such that
the model displays apparent adversarial robustness, while the attacker can
exploit the inserted weakness to bypass the adversarial training and force the
model to misclassify adversarial examples. We use abstract interpretation
techniques to detect such stealthy attacks and block the corrupted model
updates. We show that this defence can preserve adversarial robustness even
against an adaptive attacker.
- Abstract(参考訳): フェデレーション学習(fl)では,悪意のあるクライアントから保護するためのロバストアグリゲーションスキームが開発されている。
多くのロバスト集約スキームは、労働者のクォーラムに存在する一定の数の良性クライアントに依存している。
これは、クライアントが自由に参加できる場合や、アイドルシステムステータスや電力やwi-fiに接続している場合の保証が難しい場合があります。
我々は、労働者のクォーラムが完全に悪意のある場合、FLシステムが敵の訓練を行うシナリオに取り組む。
我々は、モデルに毒を盛った攻撃者が敵のトレーニングに弱点を挿入し、そのモデルが明らかに敵の堅牢性を示すようにし、一方攻撃者は、挿入された弱点を利用して敵のトレーニングを回避し、敵の例を誤分類するよう強制することができる。
このようなステルス攻撃を検出し、破損したモデル更新をブロックするために、抽象解釈技術を使用します。
この防御は適応攻撃者に対しても敵の強固さを保てることを示す。
関連論文リスト
- FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training [16.10247754923311]
FAIR-TAT(Fair Targeted Adversarial Training)と呼ばれる新しいアプローチを導入する。
敵の対人訓練(標的外攻撃ではなく)に標的の対人攻撃を使用することで、敵の対人公正性に関してより有利なトレードオフが可能になることを示す。
論文 参考訳(メタデータ) (2024-10-30T15:58:03Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
HAR(Human Activity Recognition)は、自動運転車など、幅広い用途に採用されている。
近年,敵対的攻撃に対する脆弱性から,骨格型HAR法の堅牢性に疑問が呈されている。
攻撃者がモデルの入出力しかアクセスできない場合でも、そのような脅威が存在することを示す。
BASARと呼ばれる骨格をベースとしたHARにおいて,最初のブラックボックス攻撃手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T09:51:28Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Characterizing Internal Evasion Attacks in Federated Learning [12.873984200814533]
フェデレートされた学習は、クライアントが機械学習モデルを共同でトレーニングすることを可能にする。
クライアントのモデルは、トレーニングとテストフェーズにおける攻撃に対して脆弱である。
本稿では,「内部回避攻撃」を行う敵クライアントの問題に対処する。
論文 参考訳(メタデータ) (2022-09-17T21:46:38Z) - BlockFLA: Accountable Federated Learning via Hybrid Blockchain
Architecture [11.908715869667445]
Federated Learning (FL) は、分散された分散化された機械学習プロトコルである。
FL中、攻撃者が訓練されたモデルにバックドアを注入できることが示されている。
我々は、スマートコントラクトを使用して攻撃者を自動的に検出し、処罰する、ハイブリッドブロックチェーンベースのFLフレームワークを開発した。
論文 参考訳(メタデータ) (2020-10-14T22:43:39Z) - Dynamic Defense Against Byzantine Poisoning Attacks in Federated
Learning [11.117880929232575]
フェデレート・ラーニングはビザチンによる敵対的な攻撃に弱い。
本稿では,これらのクライアントを動的に破棄する動的集約演算子を提案する。
その結果,集約するクライアントの動的選択により,グローバル学習モデルの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2020-07-29T18:02:11Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) は、敵の例の製作をモデル化するフレームワークである。
AEGは、ある仮説クラスからジェネレータとアバーサを反対に訓練することで、敵の例を設計する新しい方法を提供する。
MNIST と CIFAR-10 データセットに対する AEG の有効性を示す。
論文 参考訳(メタデータ) (2020-07-01T19:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。