Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation
- URL: http://arxiv.org/abs/2112.10593v1
- Date: Thu, 16 Dec 2021 16:53:56 GMT
- Title: Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation
- Authors: Enrico Marchesini, Davide Corsi, Alessandro Farinelli
- Abstract summary: We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
- Score: 78.17108227614928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel benchmark environment for Safe Reinforcement Learning
focusing on aquatic navigation. Aquatic navigation is an extremely challenging
task due to the non-stationary environment and the uncertainties of the robotic
platform, hence it is crucial to consider the safety aspect of the problem, by
analyzing the behavior of the trained network to avoid dangerous situations
(e.g., collisions). To this end, we consider a value-based and policy-gradient
Deep Reinforcement Learning (DRL) and we propose a crossover-based strategy
that combines gradient-based and gradient-free DRL to improve
sample-efficiency. Moreover, we propose a verification strategy based on
interval analysis that checks the behavior of the trained models over a set of
desired properties. Our results show that the crossover-based training
outperforms prior DRL approaches, while our verification allows us to quantify
the number of configurations that violate the behaviors that are described by
the properties. Crucially, this will serve as a benchmark for future research
in this domain of applications.
Related papers
- Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Learning to Terminate in Object Navigation [16.164536630623644]
This paper tackles the critical challenge of object navigation in autonomous navigation systems.
We propose a novel approach, namely the Depth-Inference Termination Agent (DITA)
We train our judge model along with reinforcement learning in parallel and supervise the former efficiently by reward signal.
arXiv Detail & Related papers (2023-09-28T04:32:08Z) - Online Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation [79.89605349842569]
We introduce the Collection and Refinement of Online Properties (CROP) framework to design properties at training time.
CROP employs a cost signal to identify unsafe interactions and use them to shape safety properties.
We evaluate our approach in several robotic mapless navigation tasks and demonstrate that the violation metric computed with CROP allows higher returns and lower violations over previous Safe DRL approaches.
arXiv Detail & Related papers (2023-02-13T21:19:36Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Neural Network Repair with Reachability Analysis [10.384532888747993]
Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural networks for perception and control.
This research proposes a framework to repair unsafe DNNs in safety-critical systems with reachability analysis.
arXiv Detail & Related papers (2021-08-09T17:56:51Z) - Conservative Safety Critics for Exploration [120.73241848565449]
We study the problem of safe exploration in reinforcement learning (RL)
We learn a conservative safety estimate of environment states through a critic.
We show that the proposed approach can achieve competitive task performance while incurring significantly lower catastrophic failure rates.
arXiv Detail & Related papers (2020-10-27T17:54:25Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z) - Learning Off-Policy with Online Planning [18.63424441772675]
We investigate a novel instantiation of H-step lookahead with a learned model and a terminal value function.
We show the flexibility of LOOP to incorporate safety constraints during deployment with a set of navigation environments.
arXiv Detail & Related papers (2020-08-23T16:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.