Vision-Based Deep Reinforcement Learning of UAV Autonomous Navigation Using Privileged Information
- URL: http://arxiv.org/abs/2412.06313v1
- Date: Mon, 09 Dec 2024 09:05:52 GMT
- Title: Vision-Based Deep Reinforcement Learning of UAV Autonomous Navigation Using Privileged Information
- Authors: Junqiao Wang, Zhongliang Yu, Dong Zhou, Jiaqi Shi, Runran Deng,
- Abstract summary: DPRL is an end-to-end policy designed to address the challenge of high-speed autonomous UAV navigation under partially observable environmental conditions.
We leverage an asymmetric Actor-Critic architecture to provide the agent with privileged information during training.
We conduct extensive simulations across various scenarios, benchmarking our DPRL algorithm against the state-of-the-art navigation algorithms.
- Score: 6.371251946803415
- License:
- Abstract: The capability of UAVs for efficient autonomous navigation and obstacle avoidance in complex and unknown environments is critical for applications in agricultural irrigation, disaster relief and logistics. In this paper, we propose the DPRL (Distributed Privileged Reinforcement Learning) navigation algorithm, an end-to-end policy designed to address the challenge of high-speed autonomous UAV navigation under partially observable environmental conditions. Our approach combines deep reinforcement learning with privileged learning to overcome the impact of observation data corruption caused by partial observability. We leverage an asymmetric Actor-Critic architecture to provide the agent with privileged information during training, which enhances the model's perceptual capabilities. Additionally, we present a multi-agent exploration strategy across diverse environments to accelerate experience collection, which in turn expedites model convergence. We conducted extensive simulations across various scenarios, benchmarking our DPRL algorithm against the state-of-the-art navigation algorithms. The results consistently demonstrate the superior performance of our algorithm in terms of flight efficiency, robustness and overall success rate.
Related papers
- Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
This paper examines the robustness of benchmark deep reinforcement learning (RL) algorithms, implemented for inland waterway transport (IWT) within an autonomous shipping simulator.
We show that a model-free approach can achieve an adequate policy in the simulator, successfully navigating port environments never encountered during training.
arXiv Detail & Related papers (2024-11-07T17:55:07Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) has emerged as a promising control framework.
Current DRL algorithms require disproportionally large computational resources to find near-optimal policies.
This paper presents a comprehensive exploration of our proposed approach in maritime control systems.
arXiv Detail & Related papers (2024-03-31T09:25:28Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
arXiv Detail & Related papers (2023-09-30T10:54:02Z) - CCE: Sample Efficient Sparse Reward Policy Learning for Robotic Navigation via Confidence-Controlled Exploration [72.24964965882783]
Confidence-Controlled Exploration (CCE) is designed to enhance the training sample efficiency of reinforcement learning algorithms for sparse reward settings such as robot navigation.
CCE is based on a novel relationship we provide between gradient estimation and policy entropy.
We demonstrate through simulated and real-world experiments that CCE outperforms conventional methods that employ constant trajectory lengths and entropy regularization.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
We introduce prompt-based learning to achieve fast adaptation for language embeddings.
Our model can adapt to diverse vision-language navigation tasks, including VLN and REVERIE.
arXiv Detail & Related papers (2022-03-08T11:01:24Z) - Using Deep Reinforcement Learning with Automatic Curriculum earning for
Mapless Navigation in Intralogistics [0.7633618497843278]
We propose a deep reinforcement learning approach for solving a mapless navigation problem in warehouse scenarios.
The automatic guided vehicle is equipped with LiDAR and frontal RGB sensors and learns to reach underneath the target dolly.
NavACL-Q greatly facilitates the whole learning process and a pre-trained feature extractor manifestly boosts the training speed.
arXiv Detail & Related papers (2022-02-23T13:50:01Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - Human-Aware Robot Navigation via Reinforcement Learning with Hindsight
Experience Replay and Curriculum Learning [28.045441768064215]
Reinforcement learning approaches have shown superior ability in solving sequential decision making problems.
In this work, we consider the task of training an RL agent without employing the demonstration data.
We propose to incorporate the hindsight experience replay (HER) and curriculum learning (CL) techniques with RL to efficiently learn the optimal navigation policy in the dense crowd.
arXiv Detail & Related papers (2021-10-09T13:18:11Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.