From superradiance to subradiance: exploring the many-body Dicke ladder
- URL: http://arxiv.org/abs/2112.10635v1
- Date: Mon, 20 Dec 2021 15:50:05 GMT
- Title: From superradiance to subradiance: exploring the many-body Dicke ladder
- Authors: Antoine Glicenstein, Giovanni Ferioli, Antoine Browaeys and Igor
Ferrier-Barbut
- Abstract summary: We report a time-resolved study of collective emission in dense ensembles of two-level atoms.
We compare the build-up of superradiance and subradiance from the ensemble when driven by a strong laser.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report a time-resolved study of collective emission in dense ensembles of
two-level atoms. We compare, on the same sample, the build-up of superradiance
and subradiance from the ensemble when driven by a strong laser. This allows us
to measure the dynamics of the population of superradiant and subradiant states
as a function of time. In particular we demonstrate the build up in time of
subradiant states through the superradiant dynamics. This illustrates the
dynamics of the many-body density matrix of superradiant ensembles of two-level
atoms when departing from the ideal conditions of Dicke superradiance in which
symmetry forbids the population of subradiant states.
Related papers
- Multimer states in multilevel waveguide QED [49.1574468325115]
We study theoretically the interplay of spontaneous emission and interactions for quasistationary eigenstates in a finite periodic array of multilevel atoms coupled to the waveguide.
Our calculations reveal the peculiar multimerization effect driven by the anharmonicity of the atomic potential.
arXiv Detail & Related papers (2024-06-18T08:27:41Z) - Long persistent anticorrelations in few-qubit arrays [117.44028458220427]
We consider theoretically the mechanisms to realize antibunching between the photons scattered on the array of two-level atoms.
Our goal is the antibunching that persists for the times much longer than the spontaneous emission lifetime of an individual atom.
arXiv Detail & Related papers (2023-03-03T16:59:41Z) - Steady-state subradiance manipulated by the two-atom decay [0.0]
We show that the two-atom decay can significantly suppress the steady-state collective radiance of the atoms.
This work broadens the realm of collective radiance, with potential applications for quantum information processing.
arXiv Detail & Related papers (2022-12-15T10:23:58Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Driven anti-Bragg subradiant states in waveguide quantum electrodynamics [91.3755431537592]
We study theoretically driven quantum dynamics in periodic arrays of two-level qubits coupled to the waveguide.
We demonstrate, that strongly subradiant eigenstates of the master equation for the density matrix emerge under strong coherent driving for arrays with the anti-Bragg periods.
arXiv Detail & Related papers (2022-02-21T11:36:55Z) - Superradiance and subradiance in inverted atomic arrays [0.0]
Superradiance and subradiance are collective effects that emerge from coherent interactions between quantum emitters.
We use herein a mean-field approach to reduce the complex many-body system to an effective two-atom master equation.
We find that three-dimensional and two-dimensional inverted atomic arrays sustain superradiance below a critical lattice spacing.
arXiv Detail & Related papers (2021-10-21T17:17:24Z) - Laser driven superradiant ensembles of two-level atoms near Dicke's
regime [0.0]
We report the experimental observation of superradiant emission emanating from an elongated dense ensemble of laser cooled two-level atoms.
In the presence of a strong driving laser, we observe that the system is superradiant along its symmmetry axis.
arXiv Detail & Related papers (2021-07-28T14:32:59Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Subradiance in dilute atomic ensembles: Role of pairs and multiple
scattering [0.0]
We study the slow (subradiant) decay of the fluorescence of motionless atoms after a weak pulsed excitation.
We show that, in the linear-optics regime, the slow decay rate can be dominated by close pairs of atoms forming superradiant and subradiant states.
For a large-enough resonant optical depth and at later time, the dynamics is dominated by collective many-body effects.
arXiv Detail & Related papers (2020-12-19T11:10:04Z) - Storage and release of subradiant excitations in a dense atomic cloud [0.0]
We report the observation of subradiance in dense ensembles of cold $87$Rb atoms operating near Dicke's regime of a large number of atoms.
We probe the dynamics in the many-body regime and support the picture that multiply-excited subradiant states are built as a superposition of singly-excited states that decay independently.
arXiv Detail & Related papers (2020-12-18T13:39:09Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.