Consistency and Rate of Convergence of Switched Least Squares System
Identification for Autonomous Switched Linear Systems
- URL: http://arxiv.org/abs/2112.10753v1
- Date: Mon, 20 Dec 2021 18:56:29 GMT
- Title: Consistency and Rate of Convergence of Switched Least Squares System
Identification for Autonomous Switched Linear Systems
- Authors: Borna Sayedana, Mohammad Afshari, Peter E. Caines, Aditya Mahajan
- Abstract summary: We propose switched least squares method for the identification for switched linear systems.
Our data-dependent rate of convergence shows that, almost surely, the system identification error is $mathcalObig(sqrtlog(T)/T big)$ where $T$ is the time horizon.
- Score: 1.1470070927586016
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we investigate the problem of system identification for
autonomous switched linear systems with complete state observations. We propose
switched least squares method for the identification for switched linear
systems, show that this method is strongly consistent, and derive
data-dependent and data-independent rates of convergence. In particular, our
data-dependent rate of convergence shows that, almost surely, the system
identification error is $\mathcal{O}\big(\sqrt{\log(T)/T} \big)$ where $T$ is
the time horizon. These results show that our method for switched linear
systems has the same rate of convergence as least squares method for
non-switched linear systems. We compare our results with those in the
literature. We present numerical examples to illustrate the performance of the
proposed system identification method.
Related papers
- A least-square method for non-asymptotic identification in linear switching control [17.938732931331064]
It is known that the underlying partially-observed linear dynamical system lies within a finite collection of known candidate models.
We characterize the finite-time sample complexity of this problem by leveraging recent advances in the non-asymptotic analysis of linear least-square methods.
We propose a data-driven switching strategy that identifies the unknown parameters of the underlying system.
arXiv Detail & Related papers (2024-04-11T20:55:38Z) - An L-BFGS-B approach for linear and nonlinear system identification under $\ell_1$- and group-Lasso regularization [0.0]
We propose a very efficient numerical method for identifying linear and nonlinear discrete-time state-space models.
A Python implementation of the proposed identification method is available in the package jax-sysid.
arXiv Detail & Related papers (2024-03-06T16:17:34Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - Finite Sample Identification of Bilinear Dynamical Systems [29.973598501311233]
We show how to estimate the unknown bilinear system up to a desired accuracy with high probability.
Our sample complexity and statistical error rates are optimal in terms of the trajectory length, the dimensionality of the system and the input size.
arXiv Detail & Related papers (2022-08-29T22:34:22Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Non-Episodic Learning for Online LQR of Unknown Linear Gaussian System [0.0]
We propose an online non-episodic algorithm that gains knowledge about the system from a single trajectory.
We characterize the almost sure convergence rates of identification and control, and reveal an optimal trade-off between exploration and exploitation.
arXiv Detail & Related papers (2021-03-24T15:51:28Z) - Stability and Identification of Random Asynchronous Linear
Time-Invariant Systems [81.02274958043883]
We show the additional benefits of randomization and asynchrony on the stability of linear dynamical systems.
For unknown randomized LTI systems, we propose a systematic identification method to recover the underlying dynamics.
arXiv Detail & Related papers (2020-12-08T02:00:04Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - Data-driven switching logic design for switched linear systems [0.0]
We deal with stabilization of discrete-time switched linear systems when explicit knowledge of the state-space models of their subsystems is not available.
We devise an algorithm that designs periodic switching logics which preserve stability of the resulting switched system.
arXiv Detail & Related papers (2020-03-11T11:08:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.