Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations
- URL: http://arxiv.org/abs/2210.05955v2
- Date: Sun, 2 Jun 2024 11:36:13 GMT
- Title: Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations
- Authors: Yuanyuan Wang, Wei Huang, Mingming Gong, Xi Geng, Tongliang Liu, Kun Zhang, Dacheng Tao,
- Abstract summary: Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
- Score: 114.17826109037048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning. However, the theoretical aspects, e.g., identifiability and asymptotic properties of statistical estimation are still obscure. This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory. When observations are disturbed by measurement noise, we prove that under mild conditions, the parameter estimator based on the Nonlinear Least Squares (NLS) method is consistent and asymptotic normal with $n^{-1/2}$ convergence rate. Based on the asymptotic normality property, we construct confidence sets for the unknown system parameters and propose a new method to infer the causal structure of the ODE system, i.e., inferring whether there is a causal link between system variables. Furthermore, we extend the results to degraded observations, including aggregated and time-scaled ones. To the best of our knowledge, our work is the first systematic study of the identifiability and asymptotic properties in learning linear ODE systems. We also construct simulations with various system dimensions to illustrate the established theoretical results.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Identifiability Analysis of Linear ODE Systems with Hidden Confounders [45.14890063421295]
This paper presents a systematic analysis of identifiability in linear ODE systems incorporating hidden confounders.
In the first case, latent confounders exhibit no causal relationships, yet their evolution adheres to specific forms.
Subsequently, we extend this analysis to encompass scenarios where hidden confounders exhibit causal dependencies.
arXiv Detail & Related papers (2024-10-29T10:15:56Z) - Constraining Gaussian Processes to Systems of Linear Ordinary
Differential Equations [5.33024001730262]
LODE-GPs follow a system of linear homogeneous ODEs with constant coefficients.
We show the effectiveness of LODE-GPs in a number of experiments.
arXiv Detail & Related papers (2022-08-26T09:16:53Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Post-Regularization Confidence Bands for Ordinary Differential Equations [6.3582148777824115]
We construct confidence band for individual regulatory function in ODE with unknown functionals and noisy data observations.
We show that the constructed confidence band has the desired kernel coverage probability, and the recovered regulatory network approaches the truth with probability tending to one.
arXiv Detail & Related papers (2021-10-24T19:21:10Z) - Closed-form discovery of structural errors in models of chaotic systems
by integrating Bayesian sparse regression and data assimilation [0.0]
We introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation.
In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states.
If observations are noisy, a data assimilation technique such as ensemble Kalman filter (EnKF) is first used to provide a noise-free analysis state of the system.
Finally, an equation-discovery technique, such as the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, closed
arXiv Detail & Related papers (2021-10-01T17:19:28Z) - Error Bounds of the Invariant Statistics in Machine Learning of Ergodic
It\^o Diffusions [8.627408356707525]
We study the theoretical underpinnings of machine learning of ergodic Ito diffusions.
We deduce a linear dependence of the errors of one-point and two-point invariant statistics on the error in the learning of the drift and diffusion coefficients.
arXiv Detail & Related papers (2021-05-21T02:55:59Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.